From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Implementing Multi-Agent Systems: Languages, Frameworks, and
Standards [Extended Abstract]*

K. Decker T. Finin C. Manning M. Singh J. Treur
U. Delaware U. Maryland MIT North Carolina Vrije Universiteit
decker@cis.udel.edu Baltimore County caroma@ai.mit.edu State University Amsterdam

finin@umbec.edu

As multi-agent systems research nears the end
of its second decade, researchers have moved be-
yond stand-alone, one-off systems and have begun
to create the software infrastructure for quickly cre-
ating new, highly interoperable systems. However,
the desire for seamless interoperability (“open” sys-
tems) brings with it the push to standardize on
agent communication languages and related agent
service facilities. Although a host of theoretical and
practical controversies surround the specification
of such standards, some shared, guiding principles
have emerged.

Many researchers focus their work on the inter-
nal structures of agents (architecture), while oth-
ers focus more on the activities and structures be-
tween agents (organization). The first principle
is the realization that most principles can be re-
cast at both the intra- and inter- (architectural
and organizational) levels. The second principle is
a drive toward the reuse of models and particu-
lar behaviors both conceptually, in reusable imple-
mentations, and in the creation of generic infras-
tructure components. The third principle revolves
around how to structure individual or multi-agent
knowledge and behaviors that includes techniques
for composition, layering, and abstraction. The fi-
nal guiding principle is the centrality of the interop-
erability question. After all, what would a multi-
agent system be unless there are in fact multiple
agents interoperating with one another?!

Methodologically, research in the area of agent
frameworks and languages has been pursued in
both a theory-driven and application-driven man-
ner. Often there can be significant interaction be-
tween theory and practice, as in the development of
BDI-based systems (Bratman 1987; Rao & Georgeff
1995). Although there are as yet no complete so-
lutions, multi-agent system development method-
ologies will be important for the software engineer-

This extended abstract is a short summary of dis-
cussions held by the Working Group on Implementing
Multi-Agent Systems held at the International Work-
shop on Multi-Agent Systems, MIT Endicott House, in
October of 1997. All errors are the fault of K. Decker.

119

mpsingh@eos.ncsu.edu treur@cs.vu.nl

ing of commercial multi-agent systems (Brazier et
al. 1997). Methodological techniques share cer-
tain methods. For instance, most researchers place
their work in the context of a shared design ontol-
ogy that defines what are the important questions
to consider and answer in the design of an individ-
ual agent (e.g. planning and scheduling subcom-
ponents, goal specification mechanisms, mappings
from desires to intentions, etc.) or an agent orga-
nization (e.g. authority relations, cooperative vs.
self-interested stances, joint intentions (Cohen &
Levesque 1990; Grosz & Sidner 1990), social com-
mitments (Castelfranchi 1993)). Even if the an-
swers to such questions are very different, the set
of issues indicated by these questions can represent
different conceptual approaches. A second method-
ological issue important to many researchers is the
controversial issue of designing appropriate agent
communication languages. No matter where a re-
searcher stands on the issue of agent communica-
tion language standardization, the centrality of the
interoperability issue causes all serious multi-agent
systems researchers to at least consider the agent
communication language issue. KQML (Knowl-
edge, Query, and Manipulation Language) (Finin
et al. 1994) is widely used at a syntactical and
very broad semantic level, but the detailed seman-
tics vary wildly between research groups. A third
shared feature of methodological approaches is a
preoccupation with how to specify agent knowledge
and behaviors in a semantically meaningful and
practically reusable way (Decker & Sycara 1997).
Fourth, methods for verifying and validating multi-
agent systems appear in many lines of work as com-
mon methodological components. Finally, for each
of these varied concerns, graphical representations
have been developed and have proven to be helpful.

In current practice, many research systems,
drawing from both theoretical and application-
oriented perspectives, have been implemented.
However, few of these systems see day-to-day use
even in non-industrial settings. Most such sys-
tems are implemented using conventional program-
ming languages (Java, C++, Lisp, and even Perl5)



rather than in languages developed exclusively for
multi-agent systems programming. Partial reuse of
agent subcomponents, and even whole agents (espe-
cially general service-oriented agents such as agent
name servers, matchmakers, facilitators, and bro-
kers) has been demonstrated many times (though
mostly within particular research groups). Agent
communication languages are common, but usage is
fairly idiosyncratic within groups (e.g. many vari-
ations on KQML). Clearly building good systems
for simple applications is feasible and is no longer
an interesting research question. Similarly clearly,
there are frameworks and tools that are being used
over extended periods of time for multiple projects.
However, not all available theoretical results have
been exploited by application or general framework
designers, and there exist some applications that
are in need of supporting theory.

Several research issues in the general area of
agent languages and frameworks are being actively
pursued. The first is the question of just how sim-
ilar agent communication languages need to be to
human languages. Most of the current popular ap-
proaches are based on speech act theory (Searle
1969), but of course there is no necessity for artifi-
cial languages to be limited by human prototypes.
A second important issue is how agents should some
to decide how much trust to place in others, and
whom to believe. This general issue encompasses
varied ideas ranging from deciding between coop-
erativity or self-interest to tracking the reliability
of certain information and highly practical research
into agent authentication methods. Another issue
is how best to facilitate industrial acceptance of
agents, which is made more complex by the use
of the term “agent” by some commercial software
developers in contexts only very tenuously related
to any sense of the term as used in the multi-agent
systems field. As infrastructure matures, an issue
arises in how the developing multi-agent infrastruc-
ture is integrated with existing networking technol-
ogy. An example of this is how the use of UDP or
other network transport mechanisms (as opposed to
TCP) would impact popular agent communication
languages such as KQML. A fifth issue is that of
agent communication language evolution—even if
agents could interoperate initially with some stan-
dard, how could the agents themselves automati-
cally extend communication and content languages
appropriately. Besides the agent communication
language issue, interoperability of internal agent ar-
chitectural components is an active issue. With the
necessity in many applications of agents that plan,
schedule, reason about beliefs, form coalitions, ne-
gotiate, etc. comes the desire to share and reuse
such reasoning components. Finally, multi-agent
systems language designers face the need to over-
come the impression of industrial programmers that
Java, is sufficient for all agent development needs.

120

For the language and framework researcher, it is
not so much the rise of a “killer multi-agent app”
that is desired as the rise of a true hit toolkit to
spread use and attract interest.

Work on standards proceeds along several dif-
ferent fronts. One level of standards is for stan-
dard agent roles and capabilities. For example,
how do agents find one another? Such high level
infrastructure can be built now, relying on well-
understood public services, such as agent name
servers, matchmaker/yellow-page services, service
brokering, mediators, facilitators, translation ser-
vices, and so on. Another level of standards is
at the transmission protocol level, one easier to
agree on than that of core agent communication
languages. Most proposed agent communication
languages have at least some notion of a sepa-
rate, extensible (or retargetable) “content” lan-
guage where domain-specific information is com-
municated. These can be standardized on, even
informally, within common domains (for example,
the agent services ontology implied above of bro-
ker, matchmakers, mediators, etc.). Finally, there
have been some proposals for tagging data on the
web with appropriate meta-data tags so that web-
searching agents would have an easier time of draw-
ing out the appropriate information from web pages
formatted more for human readability than for con-
sumption by autonomous software agents.

Finally, many controversies still range in the
agent language and framework area. The semantics
of agent communication languages is a very contro-
versial area. Arguments range from those who want
languages simple enough to be easily implemented
and validated, to those who desire the capabilities
of much more complex agent communication lan-
guages that can be extended on the fly. Another
question is how separate the semantics of an agent
communication language can be from the internal
architecture of the agents. Another controversy re-
volves around the usefulness of testbeds for agent
implementation research. Now that non-simulated
networks are so commonplace and easy to achieve,
there is a question of how much trust to put into
limited testbeds. Even a well-defined testbed prob-
lem can sometimes introduce regularities (or irreg-
ularities) that are not present in the real problem
domain, and steps must be taken that this does not
effect the resulting research results. On the other
hand, testbeds allow a remarkable amount of com-
parability in results between different groups and
approaches, and also sometimes the ability to do
careful, well-instrumented, paired-response studies.

Another controversy in the implementation area
is the impact of so-called “mobile” agents—in their
purest form, software agents that can suspend ex-
ecution on one platform, transfer their code, and
resume execution on a remote platform. While the
technology to do this already exists, the question



remains as to what it is useful for. Tremendous
numbers of test systems have been built both in
research and commercially, but few compelling ap-
plications have appeared. The two most common
involve hand-held computing devices (PDAs) that
are only intermittently connected to the network.
A mobile agent can clearly transfer off such a de-
vice to do work, ad transfer back later. The sec-
ond involves running complex data-dependent code
(say, involving a large database) without having to
transfer the data over the network—instead, the
agent goes to the data. The non-compelling nature
of these examples appears when we consider how
these things actually get done: typically, the agent
must be running “on” some software platform that
is providing some security and otherwise protect-
ing the underlying machine from rogue agents; the
agent then must transfer to another such platform.
These platforms can be considered as nothing more
than NON-mobile agents, and the “mobile” agents
are nothing more than fairly complex messages that
contain not only a description of a task to do, but
also specific code to carry out that task.

Another perennial controversy involves the struc-
ture of the agent’s internal architecture: how
many layers? Should it be application dependent?
Other arguments ensue over cooperatively designed
multi-agent systems, totally self-interested individ-
ual agents, and useful ways at arriving at socially
constructed mutual beliefs. Yet another architec-
tural question aims at scalable models: can an “or-
ganization” (made up of many agents) be thought
of itself as a kind of “agent”? Clearly organizations
(take human organizations as an example) have
some agent-like properties, for example the ability
to make commitments. An organizational commit-
ment to deliver a particular product is clearly not a
commitment of any single individual in the organi-
zation. On the other hand, it appears that some of
the simple models that we typically use to under-
stand the actions of individual agents (such as BDI
models) may break down somewhat when trying
to cope with the observed actions of large organi-
zations operating mostly via standardized operat-
ing procedures and responses. An “organizational
goal” or desire is clearly not a simple function of
the goals of the organizations individuals, nor are
the goals of the individuals a simple function of the
organizational goals.

Finally, agent language work brings a set of
controversies related to the purposes of such lan-
guages. Some are true “programming” languages,
while others might be more properly characterized
as “modeling” languages. Should work in the field
be more organized towards providing toolkits built
in existing languages (e.g. Java), or in extending
existing traditional programming languages, or in
fact creating totally new languages? An orthogo-
nal controversy revolves around the need for dif-

121

ferent languages at different levels: building indi-
vidual behaviors of an agent, building the agent’s
internal architecture, building inter-agent commu-
nication languages and coherent coordination pro-
tocols, and building multi-agent organizations.

The current prospects and outlook for this seg-
ment of the field is good. Clearly much larger
and more complex systems are being constructed
as time goes on. These bigger and better systems
are being applied to new and different application
areas, moving from Internet information retrieval
to more complex information gathering and inte-
gration applications. Areas such as manufacturing
are drawing fresh attention in the multi-agent field.
New software tools, especially graphical specifica-
tion interfaces, are being built and will be very im-
portant for spreading the use of multi-agent tech-
niques and enlisting new allies, especially among in-
dustrial users. New methodologies for multi-agent
system software engineering promise quicker and
more consistent design results. Finally, while stan-
dards are still emerging, the concentration on a few
competing possibilities has and will continue to en-
hance reusability and interoperability.

References

Bratman, M. 1987. Intention, Plans, and Practi-
cal Reason. Cambridge, MA: Harvard U. Press.
Brazier, F.; Keplicz, B.; Jennings, N.; and Treur,
J. 1997. Formal specification of multi-agent sys-
tems: a real-world case. In Proceedings of the 1st
Intl. Conf. on Autonomous Agents, 25-32.

Castelfranchi, C. 1993. Commitments:from indi-
vidual intentions to groups and organizations. In
Prietula, M., ed., AI and theories of groups & or-
ganizations: Conceptual and Empirical Research.
AAAI Workshop. Working Notes.

Cohen, P. R., and Levesque, H. J. 1990. Intention
is choice with commitment. Artificial Intelligence
42(3):213-261.

Decker, K. S., and Sycara, K. 1997. Intelligent
adaptive information agents. Journal of Intelligent
Information Systems 9(3):239-260.

Finin, T.; Fritzson, R.; McKay, D.; and McEntire,
R. 1994. KQML as an agent communication lan-
guage. In Proceedings of the Third International
Conference on Information and Knowledge Man-
agement CIKM’94. ACM Press.

Grosz, B., and Sidner, C. 1990. Plans for dis-
course. In Cohen, P.; Morgan, J.; and Pollack, M.,
eds., Intentions in Communication. MIT Press.
Rao, A., and Georgeff, M. 1995. BDI agents: From
theory to practice. In Proceedings of the First In-
ternational Conference on Multi-Agent Systems,
312-319. San Francisco: AAAI Press.

Searle, J. R. 1969. Speech Acts: An Essay in the
Philosophy of Language. Cambridge U. Press.





