
Integrated Machine Learning For Behavior Modeling in Video

Games

Ben Geisler

Radical Entertainment
369 Terminal Ave. Vancouver, BC Canada

bgeisler@radical.ca

Abstract. In a multiplayer game, your opponents are
other human players. These players make mistakes.
Mistakes and miscalculations provide opportunity for
other players. The challenge (and ultimately the fun)
which comes from a multiplayer game is the give and
take that comes from human interaction. The standard
opponent in a first person shooter uses a finite-state
machine and a series of hand coded rules. Drawbacks
of this system include a high level of predictability of
opponents and a large amount of work manually
programming each rule. To mimic the multiplayer
experience of human vs. human combat typically
involves a high amount of tuning for game balance.
Because of the difficulty of the problem, most single
player games instead focus on story and other game
types. A perfect artificial opponent for a first person
shooter has never been modeled. Modern advances in
machine learning have enabled agents to accurately
learn rules from a set of examples. By sampling data
from an expert player we use these machine learning
algorithms to model a player in a first person shooter.
With this system in place, the programmer has less
work when hand coding the combat rules and the
learned behaviors are often more unpredictable and
life-like than any hard-wired finite state machine. This
paper explores several popular machine learning
algorithms and shows how these algorithms can be
applied to the game. We show that a subset of AI
behaviors can be learned effectively by player
modeling using the machine learning technique of
neural network classifiers trained with boosting and
bagging. Under this system we have successfully been
able to learn the combat behaviors of an expert player
and apply them to an agent in a modified version of
the video game Soldier of Fortune 2. However, the
learning system has the potential of being extended to
many other game types.

1. Introduction
Since their creation, the type of video games
known as First Person Shooters (FPS) have been
largely devoid of any sort of artificial
intelligence. Games like Wolfenstein©, Doom©
and Quake© present the player with enemies
who mostly act as fodder. They walk towards
the player, guns blazing, until they are dead.
This has its own merits as a game type in and of

itself. However, there is room for other types of
games with more interactive and lifelike
opponents. Recently developers began noticing
this deficit and games such has Half-Life©,
UnReal©, Halo© and Call of Duty©, and have
popped up. These games are successfully able to
use expert-based systems and simple finite-state
machines to give the illusion of an intelligent
enemy (Linden 2001). As a result, these well
established algorithms have helped game
Artificial Intelligence (AI) advance in leaps and
bounds in recent years. However, there is still
much to be done. For the experienced player, the
AI is never �good enough�. It needs to keep
challenging the player, to adapt to the player and
if possible learn from the player. Currently there
is no such behavior in the realm of the First
Person Shooter.

Instead, a good player will learn the behavior of
the enemy AI and begin exploiting it. The
exploitation of these flaws should be an aspect of
the game, however the game must also keep
challenging skilled players. In order to account
for different skill levels, auto-adjusting difficulty
systems could be incorporated into the behavior
patterns and choices of opponents (Pfeifer 2004).
The focus of this paper is on using a machine
learning system to model player behavior.
However, any such system should be designed
with enough overrides and hooks to ensure game
balance.

To ensure quality opponents for the skilled
player of a first person shooter we will now turn
to the recent advances in academic artificial
intelligence, especially machine learning.
Machine learning is concerned with the question
of how to build a computer program that can
improve its performance on a task through
experience. A task can be thought of as a
function to be learned. It is the function�s
responsibility to accept input and produce output
based on the input parameters. For example, in

making a decision to move forward or backwards
in a FPS the input to the function is a list of
variables describing the current environment of
the game. The input vector will include data
describing how many opponents are near the
player, the players health level, and any other
relevant information. The output is a
classification of whether or not the player should
move forward. The decisions made by a human
player in a first person shooter will often be
unexplainable except by example. That is, we
can easily determine input/output pairs, but we
cannot easily determine a concise relationship
between the input and desired output. We can
sample his actions and based on his performance
in the game we can state with confidence that
these are examples of correct decisions or
examples of incorrect decisions. This process is
what we investigated in this paper.

Machine Learning takes advantage of these
examples. With these input/output pairs, a
machine learning algorithm can adjust its
internal structure to capture the relationships
between the sample inputs and outputs. In this
way the machine learner can produce a function
which approximates the implicit relationships in
the examples. Hidden amongst the examples
will be many relationships and correlations. A
human observer may be able to extract a few of
these relationships but machine learning methods
can be used to more extensively search out these
relations.

To use a machine learning algorithm it is first
necessary to determine the features that are
important to the task. It is also necessary to
determine what we will attempt to learn from our
examples. Once these features are determined,
we can represent an input/output pair as a
collection of feature settings and an indication of
the desired classification of this input. For
example, the input/output pair in our move
forward/backward function would be a vector of
environment data about the game and a decision
to move forward or backward as output. In our
hypothetical task we would then collect samples
of data that fit the �move forward� classification
and samples of data which fit the �move
backward� classification. The combination of
these two types of example classifications makes
up the data set. The learning algorithm makes
use of both types of examples when changing its
internal structure. This form of learning is
known as supervised learning, since we are
acting as a teacher to the learning algorithm

(Mitchell 1997). We specify which examples
should be thought of as positive and which are
negative. A supervised learning algorithm will
split our data set further into a training set and a
test set. The training set serves to allow the
machine learner to update its internal settings
based on only these examples. The test set is
used to estimate how well the internal learned
function will perform on previously unseen data
(Mitchell 1997).

There are many different machine learning
algorithms to choose from. Some algorithms
excel in certain domains while others do not
perform as well. Instead of hastily picking a
learning methodology it is preferable to frame
the problem as much as possible. After the
appropriate data set is determined it will be
necessary to gather plenty of samples, and try a
few standard learning algorithms. However,
�standard algorithms� to academics are often
novel ideas to game developers. For example,
things like ID3 trees, neural networks, and
genetic algorithms have only recently been
considered. Machine learning is almost non-
existent in the realm of the FPS video game.

This paper will show that progress can be
achieved by applying some recent machine
learning algorithms to the task of learning player
behavior in a First Person Shooter. This will
enable game developers to insert some
unpredictability to the agents in a video game. It
will be shown that this application will also
allow developers to model expert players with
little rule specifications. This means the doors
will be opened for many different behaviors for
our agents. For example, it will be very easy to
model the behavior of a sniper or heavy-weapons
specialist without needing predetermined rules.

With current trends in game development the
timing couldn�t be better to introduce new
learning algorithms. Computer gaming is now an
six billion dollar a year industry (Savitz 2003).
It is a competitive marketplace especially in
terms of gameplay, which is something largely
determined by the quality of a games� AI
routines. A game with a large variety of unique
agent behaviors has a competitive advantage to a
game with a few hand coded expert systems. In
addition to being a preferred investment to
developers it�s also a viable option on current
hardware. Due to hardware advancements,
processor cycles are easier to come by and
memory is cheap. Neural networks in modern

games would be unheard of in the late nineties.
But now it�s not only possible on the PC, it�s
already implemented in games such as �Black
and White� � and �Creatures� �.

2. The Problem and the Data Set
It is straight forward to take a well-defined game,
throw in some control structure for some agents,
and begin teaching them. But an FPS1 is not
well defined. There has only been a spattering of
attempts at doing so (Laird 2000). There are no
defined tactics for a player of an FPS. The game
is about battle, it is survival of the fittest; shoot
or be shot. The more agents the player kills, the
higher his score. But if the player is too gun
happy, he might end up getting caught off guard
and shot in the back. Even expert players of an
FPS can�t fully quantify their tactics. They can
tell you general tips. i.e., make sure to not stay in
one place too long, do not rush at an opponent
straight on, strafe to the left if one can. But there
are so many exceptions to any one rule that it
makes it difficult to hard code a rule system.

The first step is to figure out what input the
program has access to and what output might be
useful. It might seem at first that an ideal FPS
learning system would account for every action
to take at any given situation. However, there
will always be a need to allow some amount of
programmer control in an FPS. The storyline
and theme may demand specific actions at
certain times. For example, it may be interesting
for soldiers to jump over barriers at a certain
location with certainty (Geisler 2003). For this
reason we want control over what behaviors are
learned from expert players and which are hand
coded. Combat is a good place to use learned
behavior because unpredicted (but sensible)
actions are always preferred. Furthermore, there
are only a handful of basic actions that are
important during combat and these actions can
be quantified. In this paper we look at four of
the basic actions: accelerate/decelerate, move
forward/backward, face forward/backward,
jump/don�t jump. The general behavior of a bot2
or player can be broken down into a sequence of
moves (or move combinations). There will be

1 Although our research applies to any game, this
research has used the FPS known as �Soldier of
Fortune 2�� (made by Raven Software) for its
experiments.
2 The AI agents in FPS video games are known
as a �bots.�

many finer points to address once the sequence
of moves is determined. For example, without
proper calculations a bot may accidentally bump
into a wall or walk off a cliff. A separate motor
control system will be responsible for this.

What is needed to make a choice for any of these
decisions? How does a player or agent know if it
is time to move forward. To achieve more
lifelike and challenging characters, developers
would like to model these decisions after an
actual player and learn how these decisions are
made. At this stage, the problem becomes a
more traditional machine learning problem. A
good set of features must be found to represent
the environment of the game. Even an expert
gamer can not quantitize what it is that makes
him good. Many of his decisions will be
reflexive, and will not have an immediately
tangible explanation behind them.

The Feature Set
This paper investigates only four of the basic
combat actions for an FPS: accelerate/decelerate,
move direction, face direction and when to jump.
These four actions will be the output portion of
the data sample. We must now decide what
information will be useful in making these four
decisions. There is a large amount of available
information but much of it is superfluous to
learning player strategies. Perhaps the most
important information in any combat scenario is
to know where the agent�s enemies are. Since
information about location is so important, it is
divided into several smaller features. Spatial
data about enemy location will be determined by
breaking the world up into four sectors around
the player, as illustrated in Figure 1.

Figure 1: Game sectors with player centered
in the middle.

Sector 1

Sector 2

Sector 3

Sector 4

700 Feet

Sector information is relative to the player. For
example, Sector 1 represents the area in front of
the player. Actual world position is not as
important to the player as is information about
his immediate surroundings. Data about enemies
and goals will be expressed in terms of sector
coordinates. For example, the location of the
closest enemy to the player will be indicated by a
sector number. If the goal is due east of the
player it will be considered in sector 2. A sector
ends at 700 feet and is the maximum view
distance of the player on the sample levels.

In addition to enemy information, the player
must continually be aware of his health level.

For example, if a player has low health his
actions might be significantly different than if he
has full health. Also, most FPS games are
simply about surviving the longest without
dying. Points are awarded to whomever can
�capture the flag� and return it to their base. To
an expert player this is significant motivation to
change strategy during game play. The feature
set includes information about the distance the
player is from the closest goal and what sector
contains that goal. Finally, we record the current
move direction and direction the player is facing.
This allows us to determine such tactics as
retreat and advance.

Table 1: Input Feature Set and Possible Outputs
Input (current information about the world around the player)
Closest Enemy Health This is the current health of the closest enemy. We discretize

the possible values of this feature to zero through ten.
Number Enemies in Sector 1 This is number of enemies in sector one3.
Number Enemies in Sector 2 This is number of enemies in sector two.
Number Enemies in Sector 3 This is number of enemies in sector three
Number Enemies in Sector 4 This is number of enemies in sector four.
Player Health This is the player health. In the game the

possible values are 0 to 100.
Closest Goal Distance Every game has a goal. By securing the goal the player gains

points. The goal used in this research is a briefcase.
Approximately 10,000 units is the start distance from the goal
and this is the greatest distance possible; we linearly
discretize this on a 0-10 scale.

Closest Goal Sector The goal is in the following sector (note goal can be moved by
other agent; this is non-static). Goal sector is relative to player.

Closest Enemy Sector This is the sector containing the closest enemy.
Distance to Closest Enemy This is the number of game units the agent is from his closest

enemy. Values range from 0 through 10, scaled from a game
representation of units (rounded to the nearest 1000 game
units and capped at 10,000).

Current Move Direction When this data was collected the player was moving in this
direction (0 for moving south, 1 for moving north)

Current Face Direction When this data was collected the player was facing this
direction (0 for facing south, 1 for facing north).

Output (collected at next time step after input is sampled)
Accelerate If player is moving faster than in the last recorded frame, this

variable is set to 1, otherwise the value is set to 0.
Move Direction Direction of player movement in world angles; 0 means he is

moving forward in the front 180 degree arc from world origin
(north), 1 means he is moving backwards (south).

Facing Direction This is the orientation of the player; 1 means he is facing
somewhere in the front 180 degree arc of the world origin
(north); 0 means he facing somewhere in the back 180 degree
arc (south) .

3 If there are more than ten enemies the value is set to ten. The same upper bound holds for the other three
sectors.

Extracting the Data Set

Once the feature set is determined it is possible
to run the game and collect some samples. For
the purposes of this paper, the outcome
associated with any set of features will be one of
the basic actions as described in the output
section of Table 1. The feature set will be
measured every other game frame (100
milliseconds). Every sample has a
corresponding outcome that occurs 50
milliseconds later (the amount of time it takes to
process a combination of player key-press
events). This outcome will be some combination
of the four basic actions:

- Move front / back
- Face front / back
- Jump / do not jump
- Accelerate / do not accelerate

3. Learning From the Data
Data was collected by sampling the decisions of
an expert player. The level used was a standard
�capture the flag� game with thirteen enemy
agents. We created a special version of Soldier
of Fortune 2� to collect the available game data
and translate it into our feature vectors. For
example, when a game frame is sampled we can
access locations of the nearest enemies within a
certain radius, then using vector math we

compute their location relative to the player.
This technique is used for all the sector
information features. The Move Direction and
Face Direction features are computed by simply
recording the current world Face Direction and
Move Direction of the player. The output section
of the feature vector is computed on the time step
following the sample. We record whether or not
the player accelerates, changes movement,
changes facing, or jumps. This part of the
feature vector represents the decision made by
the player. Now that we have the input features
as well as the decision, we have a complete
feature vector. This feature vector is saved and
the collection of samples becomes our training
and testing sets used for applying the learning
algorithms. We collected over ten thousand
individual examples by observing one expert
player for 50 minutes.

ANN
An artificial neural network (ANN) learns by
using a training set to regress through the
examples and learn in a non-linear manner. The
basic back-propagation algorithm (with ten
hidden units) was used in this project (Mitchell
1997).

Table 2: Backpropogation Algorithm

Backprop(dataset, eta, Nin, Nout, Nhidden) Data in dataset is (x, t), eta is the learning rate, Nin is the size of the
input layer, Ntout of the output layer, and Nhidden of the hidden layer

• Create a feed forward network with Nin inputs, Nout outputs, and Nhidden hidden nodes. Initialize
each Wij to some small random value

• Until error value is below some threshold, repeat:

• For each (x, t) in dataset:

• Input the instance x and compute outputs ou for every node (Forward
propagation of activation)

• Propagate errors backward through the network

• For each output unit k, compute its error term: deltak = ok(1 � ok)(t_ - ok)

• For each hidden unit h, compute its error term: deltah = oh(1 � oh)(∑k ⊆

outputs) of Wkh deltak

• For each Wij = Wij + delta- Wij, where delta- Wij = eta deltaj xji

The standard validation-set concept was used to
avoid overfitting of the training set. Similar to
the method of moving 10% of the training
examples into a tuning set for ID3 pruning, 10%
of the ANN training data will be moved into a
tuning set to validate our learned function.
After every five epochs of training we save the
network weights at that time step and calculate
the error on the validation set with these weights.
If at any time the error rate is lower than the
previous error rate from five epochs previous,
training is stopped and the network weights of
the previous validation step are used.

4. Experimental Methodology
Because of the complexity of the FPS there are
some implementational hurdles to collecting this
data. Since the data was sampled at a rate of
every 100 milliseconds, there will be many input
sets that look exactly the same. If nothing has
changed in 500 milliseconds, only one of these
samples is recorded. However, if at least one of
the features changed this sample will always be
recorded. This is important, otherwise crucial
feature/action pairs might be missed.

Events with no corresponding action are
discarded. A portion of these events may have
proven useful: if no action is specified it could
mean to stand still. However, rare events such as
climbing ladders, opening doors, and going
prone were not encoded. For this reason, it can
not be assumed that the remaining non-classified
situations dictate any particular action, so they
were thrown out before learning began.4

The game is run in multi-player mode with
thirteen agents placed in a large multi-leveled
environment. This environment includes places
for every type of basic movement. This system
for collecting data has been verified to work on
any environment type with no necessary
customization. However, the examples applied
to the learning algorithms were always from the
same environment. Data was collected over the
course of several game sessions and combined
into one massive data set of approximately 6000
examples. Each game was run by the same
�expert� player, whose performance was fairly
consistent.

4 Un-classified examples accounted for
approximately 7% of the total collected
examples.

5. Ensemble Methods: Boosting
With 5000 training examples the artificial neural
network (ANN) in particular never got error rates
worse than 16% on any of these tasks. However,
as noted above this is still not acceptable. Since
the agent will be using these decisions in real
time again and again, the error rates need to
drop. A great many of the functions work
perfectly to account for many variables.
However, it is the rare cases that hurt. What is
preferred is a way to hedge the bet and rely on
the functions that learn the task well, while
somehow penalizing those that do not.
Ensemble methods are one way to do this. An
ensemble is a set of independently trained
classifiers. The basic idea is to run the data on
several different sets of data and have each
learned function �vote� on the result. This vote
then becomes the decision. Research has shown
that usually ensemble methods produce more
accurate results than singleton classifiers (Opitz
& Maclin 1999). Bagging (Breiman 1996) and
Boosting (Freund & Schapire 1996) are two
popular methods for producing ensembles.
These methods are fairly new and have not been
tested on a domain similar to a first person
shooter video game. Each of these ensemble
methods was investigated in this paper.

6. Results
Figure 3 shows that the error rates of using an
artificial neural network with bagging were
much lower than any other learning methodology
we tried (Geisler 2002).

The Move Direction task was learned with only a
5.2% error rate. Face Direction had only a5.3%
error rate. As with Move Direction, this is an
important task for the domain. The basic ANN
algorithm would have made a mistake one out of
every six times, which wasn�t acceptable. One
mistake in seventeen is much more acceptable,
and while it will still be noticeable this error rate
may be explained away as natural mistakes as
opposed to obvious AI blunders.

The Jump decision fares better overall when the
majority category is guessed. This is still true
with ensembles. In this case boosting got the
error rate down to 5% while the majority
category hovers around 2.5% percent. But is is
important to consider what type of false negative
statistics would be generated if it was always
voted to not Jump. Table 6 shows that there are
indeed more false negatives in the baseline case.

Table 3: Confusion Matrix for Jump Baseline

 Actual
 Yes No

Predicted Yes 0 0

 No 126 4874

In this domain, it is desirable to lower the false
negative rate at the cost of raising the true
negative rate. In a FPS, it does not matter if the
agent occasionally jumps for no reason. But at
the same time the agent should jump when
appropriate. Does our most accurate learning
algorithm (boosting with an ANN) perform with
more true positives than false negatives?

Table 5 shows the ANN with boosting predicts
jumping when appropriate with 95% accuracy.
Minimal accuracy is gained on true positives and
the false negatives increase dramatically. With
this algorithm in place, a jump occurred on 13%
of the cycles when the agent shouldn�t have
jumped according to the training data. For this
application it will be suitable to lower this
number but allow most of the false negatives to
slip through. Perhaps as a post-processing step
a single flip of a coin could be used to decide
whether or not to follow the �jumping advice.�
On real data, this would bring the true positive
rate down, but it would also bring the false
positive rate down to 6.5%.

Even with bagging the Accelerate task was still
recording a 10% error rate, which is not

acceptable. However, once boosting was added
the Accelerate task increased in performance, to
the point where it�s now the most accurately
predicted function at only a 4.8% error rate!

7. Integration of the Learned Model

Applying the ANN to the Game
Applying an ANN decision to a bot at run time
was tricky matter. Remember that a standard bot
in a Quake3 game knows nothing about its
surroundings. For example, it has no idea a priori
that if it walks forward, it will hit a wall. This
makes it difficult to directly apply the results to a
real situation. We created a back end controller
for the bot to interpret the semantics of �back,
forward, right, left, cover and shoot. Many
games use some sort of node system to partition
the playable areas for the bots (DeLoura 2000)
(Geisler 2003). This means that any time the
bots are within a node they will know what
nodes are in front of them, what nodes are for
cover, what nodes are reachable from the given
node, and what other enemies or players are in
any given node.

Simple geometry can be used to derive what
nodes are in front or back of each other in
relation to the player. The height of walls is also
known in an FPS. If a node intersects a wall at
one height, but does not intersect higher up, this
may be a possible duck point.

Finite States and Putting It All Together
Our finite state machine is capable of performing
a set of micro-actions. For example, we created a
routine to find a node that will give us cover
from closest enemy and routines to move

0

5

10

15

20

25

30

35

40

45

Move Direction Face Direction Jump Accelerate

Decision

Te
st

 S
et

 E
rro

r R
at

e Baseline
NB
ID3
ANN
ANN Bagging
ANN Boosting

Figure 3 : Error Rate Summary

forward, towards the closest enemy could be
used. This task was made easier by a modular
design to the AI architecture (Ramsey 2003).
What gun should the agent attack with, and what
about grenades? All these things can be decided
easily by some hand-coded rules and deferred to
a separate module. Each set of rule will be
contained within a finite state Once the high
level attack action is determined the finite states
can then sort out the details.

In our system some of the authority is delegated
to a smaller expert system, but in the meantime
the classifier can control the more general
behavior of fleeing, fighting, or holding our
ground. This means that it will be more difficult
for the player to spot a pattern. Patterns in FPS
games often manifest themselves in how these
higher level decisions are made. For example, if
the player is there, the agent goes towards him.
This unfortunately results in the player learning
that course of action, and learning to account for
it. However, now the basic direction of the bot
can be modeled from player reactions. In
practice this indeed holds to be true. Playing this
simple combat map one can see agents deciding
to run back for cover. Once the bots get to the
desired spot the finite state takes over telling
them the details of what to do next. For
example, after running backwards because of the
higher level decision the finite state may tell the
bot to make sure and reload if their gun is empty.
In general, this combination provides for a more
dynamic game.

It has been shown that four ensembles of neural
networks can be used to model player actions at
any point in time. The accuracy on these is
pretty decent, ranging all the way up to 96%
accuracy for basic �move back� and �move
forward� operations. It has also been shown that
not all decisions in the game need to be learned.
It�s not necessary to have 100% accuracy here,
but just to look intelligent and to present a
challenge to the player. Many things remain to
be done. For one the available actions should be
extended to include crouching and various
speeds of movement (e.g. run vs. walk). Also,
finer grained decisions could be incorporated, i.e.
the decision to shoot vs. throw a grenade. Since
the actions taken do not have to be exact and it�s
in fact more enjoyable if it�s dynamic, it might
be interesting to try an algorithm with a bit more
activity in the solution space. For example,
genetic algorithms and their notion of occasional
mutations may prove interesting.

 8. Conclusion
This paper has explored several popular machine
learning algorithms and shown that these
algorithms were successfully applied to the
complex domain of the First Person Shooter
(FPS). We have shown that a subset of AI
behaviors can easily be learned by player
modeling using machine learning techniques.
Under this system we have successfully been
able to learn the combat behaviors of an expert
player and apply them to an agent in the Soldier
of Fortune 2� FPS5. The following tasks were
learned: acceleration, direction of movement,
direction of facing and jumping. We evaluate
both empirically and aesthetically which learner
performed the best and make recommendations
for the future. We have created a system which
uses these learned behaviors in a finite state
system within the game at real time.

However, this is just the tip of the iceberg. First
Person Shooters are not the only type of genre
that can benefit from learning and modeling
player behavior. Our work is directly applicable
to any game genre that demands reasonably
intelligent behavior from it�s enemies. The
machine learners presented in this paper were
shown to be adept at modeling an expert player.
However, when we used our machine learners to
model an inexperienced player we ended up with
an inexperienced bot. Therefore, this system
could be used for fodder type enemies as well.
Indeed, all the designer must do is �step into the
shoes� of the enemy he is creating and act out a
set of behaviors. With enough training and
tuning this learned model could be directly
applied.

In addition to enemy behavior modeling, this
system could easily be extended to co-op games
and games with non-human buddies. Machine
learning in this context can be under the hood
and transparent to the player. The player can
keep his mind on having fun and not on training
his buddies.

9. References
DeLoura, M (2000) Game Programming Gems.
Charles River Media, MA.

Freund, Y. and Schapire, R. (1996) Experiments
with a new boosting algorithm. Proceedings of

5 A heavily modified version of Soldier of
Fortune 2 was employed for these experiments.

the Thirteenth International Conference on
Machine Learning, 148-156 Bari, Italy.

Geisler, B. and Reed, C. (2003). Jumping,
Climbing, and Tactical Reasoning: How to Get
More Out of a Navigation System. Game AI
Programming Wisdom : Charles River Media,
MA.

Geisler, B. (2002). An Empirical Study of
Machine Learning Algorithms Applied to
Modeling Player Behavior in a 'First Person
Shooter' Video Game. M.S. thesis, Department of
Computer Sciences, University of Wisconsin
Press. Madison

Laird, J.E. (2000) Adding Anticipation to a
Quakebot. Papers from the 2000 AAAI
Symposium Series: Artificial Intelligence and
Interactive Entertainment, Technical Report SS-
00-02. AAAI Press.

Liden, L. (2001) Using Nodes to Develop
Stategies for Combat with Multiple Enemies In
Artificial Intelligence and Interactive
Entertainment: Papers from the 2001 AAAI
Symposium Series: Artificial Intelligence and
Interactive Entertainment , Technical Report SS-
00-02, 59-63. AAAI Press.

Manslow, J. (2002). Imitating Random
Variations in Behavior using a Neural Network.
AI Game Programming Wisdom

Mitchel, T. (1997) Machine Learning. McGraw
Hill, New York.

Opitz, D. and Maclin, R. (1999) Popular
ensemble methods: An empirical study, Journal
of Artificial Intelligence Research, Volume 11,
pp.169-198.

Pfeifer, B. (2004). Narrative Combat: Using AI
to Enhance Tension in an Action Game. Game
Programming Gems 4: Charles River Media,
MA.

Ramsey, M. (2003). Designing a Multi-Tiered
AI Framework. Game AI Programming Wisdom
2: Charles River Media, MA.

Zhimin, D (1999) Designing AI engines with
built-in machine learning capabilities.
Proceedings of the Game Developers
Conference. pp.191-203.

