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Abstract 
Although many talented researchers have created excellent 
tools for computer-assisted instruction and intelligent 
tutoring systems, creating high-quality, effective, scalable 
but individualized tools for learning at a low cost is still an 
open research challenge.  Many learning tools create 
complex models of student behavior that require extensive 
time on the part of subject experts, as well as cognitive 
science researchers, to create effective help and feedback 
strategies.  In this research, we propose a different approach, 
called the q-matrix method, where data from student 
behavior is “mined” to create concept models of the 
material being taught.  These models are then used to both 
understand student behavior and direct learning paths for 
future students. We describe the q-matrix method and 
present preliminary results that imply that the method can 
effectively predict which concepts need further review. 

Introduction 
Computer-aided instruction has great promise in expanding 
the accessibility of high quality education.  In particular, it 
is the capability to adapt to individual students that makes 
intelligent tutoring systems such as those in (Conati, et al., 
2002; Heffernan & Koedinger, 2002; Van Lehn & Martin 
1998) attractive. However, the majority of these systems 
require the construction of complex models that are 
applicable only to a specific tutorial in a specific field, 
requiring the time of experts to create and then test these 
models on students.  In fact, these are only a few of the 
tradeoffs ITS system developers face (Murray 1999).  One 
system, REDEEM, was built to ameliorate the time needed 
to create an ITS, and allow teachers to apply their own 
teaching strategies in an existing computer-based training 
(CBT) system, and has been shown to be more effective 
than a non-expert human tutor in improving student test 
scores (Ainsworth, et al., 2003).  Another system, 
ASSERT, was built to replace the need for expert model 
design, using theory refinement to learn student models 
from behavior, and generate feedback for remediation 
(Baffes & Mooney, 1996). 
 

The q-matrix method, has the same goal of being able to 
quickly modify an existing CBT tool to be a simple ITS.  
The method employs knowledge discovery and data 
mining techniques to model student knowledge and direct 
knowledge remediation.  In this work, we briefly discuss 
the history of the q-matrix method, describe the q-matrix 
algorithm and evaluations, and present two experiments 
that demonstrate the application of the method in 
understanding student behavior and directing learning. 

Background and related work 
The original inspiration for the q-matrix method came from 
Tatsuoka et al., who explored student misconceptions in 
basic math concepts, such as adding fractions (Birenbaum, 
et al. 1993; Tatsuoka, 1983).  The main goal of this 
research was diagnosis of students’ misconceptions, which 
could be used to guide remediation, assess group 
performance as a measure of teaching effectiveness, and 
discover difficult topics (Birenbaum, et al. 1993). Tatsuoka 
developed a rule space, based on a relatively small set of 
rules and ideas, in which hypothesized expert rules and 
actual student errors in fraction addition could be mapped 
and compared. For example, for -1 + -7, one “rule” is that 
the student might add the two absolute values.  This 
answer, 8, would them be compared with student answers.  
This space allowed instructors to map student errors 
without having to catalog every possible mistake. The 
expert point in rule space closest to the student response 
corresponds to the rule the student is assumed to be using. 
This method improves on other procedural models, by 
creating a space where all student responses can be 
compared to expert predictions. 
 
This idea of determining a student’s knowledge state from 
her test question responses inspired the creation of a q-
matrix, a binary matrix showing the relationship between 
test items and latent or underlying attributes, or concepts 
(Birenbaum, et al., 1993). Students were assigned 
knowledge states based on their test answers and the 
constructed q-matrix.  An example of a binary q-matrix is 
given in Table 1.  A q-matrix, or “attribute-by item 
incidence matrix”, contains a one if a question is related to 



the concept, and a zero if not. For example, in this q-
matrix, questions q1 and q6 are both related by concept 
con1, while q1 is also related to q2 and q4 by concept 
con2.  Brewer extended these to values ranging from zero 
to one, representing a probability that a student will answer 
a question incorrectly if he does not understand the concept 
(1996). 

Table 1: Example q-matrix 

 Questions 
 q1 q2 q3 q4 q5 q6 
con1 1 0 0 0 0 1 
con2 1 1 0 1 0 0 
con3 1 1 1 0 0 0 
con4 1 0 1 0 0 0 

 
Tatsuoka’s rule space research showed that it is possible to 
automate the diagnosis of student knowledge states, based 
solely on student item-response patterns and the 
relationship between questions and their concepts.  
Through promising, the rule space method is very time 
consuming and topic-specific, and requires expert analysis 
of questions. The rule space method provides no way to 
measure or validate that the relationships derived by 
experts are in fact those used by students, or that different 
experts will create the same rules.    
 
In 1992, Hubal studied the correspondence between expert-
derived q-matrices and student data, and found that these 
two did not necessarily coincide.  In 1996, Brewer created 
a method to extract a q-matrix from student data, and 
found that the method could be used to recover knowledge 
states of simulated students. Sellers applied the q-matrix 
method to small groups of students (1998).  In (Barnes & 
Bitzer, 2002), we applied the method to larger groups of 
students, and in (Barnes, et al., 2005) found the method 
comparable to standard knowledge discovery techniques 
for grouping student data.  In particular, the method 
outperformed factor analysis in modeling student data and 
resulted in much more understandable q-matrices, but had 
higher error than k-means cluster analysis on the data.  
However, cluster analysis is not as suitable for automated 
direction of student learning as the q-matrix method, 
because human intervention would usually be required to 
create behaviors to associate with each cluster. 

Q-matrix algorithm 
The q-matrix algorithm, as devised by Brewer in 1996, is a 
simple hill-climbing algorithm that creates a matrix 
representing relationships between concepts and questions 
directly from student response data.  The algorithm varies 
c, the number of concepts, and the values in the q-matrix, 
minimizing the total error for all students for a given set of 
n questions.  To avoid of local minima, each hill-climbing 
search is seeded with different random q-matrices and the 
best of these is kept. 
 

First, c, the number of concepts, is set to one, and a random 
q-matrix of concepts versus questions is generated with 
values ranging from zero to one.  We then cluster student 
response data according to “concept states”, and compute 
the total error associated with assigning students to concept 
states, over all students.   
 
After the error has been computed for a q-matrix each 
value in the q-matrix is changed by a small amount, and if 
the overall q-matrix error is improved, the change is saved. 
This process is repeated for all the values in the q-matrix 
several times, until the error in the q-matrix is not changing 
significantly. 
 
After a q-matrix is computed in this fashion, the algorithm 
is run again with a new random starting point several 
times, and the q-matrix with minimum error is saved, to 
avoid falling into a local minimum.  It is not guaranteed to 
be the absolute minimum, but provides and acceptable q-
matrix for a given number of concepts. 
 
To determine the best number of concepts to use in the q-
matrix, this algorithm is repeated for increasing values of 
c. The final q-matrix is selected when adding an additional 
concept does not decrease the overall q-matrix error 
significantly, and the number of concepts is significantly 
smaller than the number of questions.  This is comparable 
to the “elbow” criterion in choosing the number of factors 
for a factor analysis.  For this study, q-matrices with an 
error rate of less than 1 per student were selected.  Other 
built-in criteria could also be used to protect from over-
fitting the data. 

Q-matrix evaluation 
In the q-matrix method, student responses are grouped into 
clusters by concept states.  Each cluster in the q-matrix 
method is represented by its concept state, a vector of bits 
where the ith bit is 0 if the students do not understand 
concept i, and a 1 if they do.  Each concept state also has 
associated with it an ideal response vector (IDR).  We use 
the concept state with the q-matrix to determine the IDR.  
For each question q in the q-matrix we examine the 
concepts needed to answer that question. If the concept 
state contains all those needed for q, we set bit q in the IDR 
to 1, and otherwise to 0.  When the q-matrix contains only 
binary values (not probabilities between 0 and 1), this can 
be calculated for a concept state c and the q-matrix Q by 
the following procedure, composing ¬c with Q: 

IDR =  ¬ ((¬c)Q ) 
 
For example, given concept state c = 0110 and the q-matrix 
Q given in Table 1, ¬c = 1001, (¬c)Q = 101001. Therefore, 
IDR = ¬((¬c)Q) = 010110.  This can be explained by 
viewing (¬c)Q as all the questions that require knowledge 
in the concepts that are unknown for a student in concept 
state c.  Thus, the IDR for c is exactly the remaining 



questions, since none of these require concepts that are 
unknown for a student in concept state c. 

 
When the q-matrix consists of continuous probabilities, we 
compute the IDR as explained above, but the negation 
symbol is interpreted as the probability of the opposite 
outcome, so in each case where a not appears, we 
interchange any following values x with 1-x. 
 
A q-matrix is evaluated on its fit to a set of student 
responses, and is measured as error per student.  We now 
describe the error computation method.    First, we create 
an array whose indices are answer vectors, from 0 up to 

2
q

-1, where q is the number of questions in the tutorial.  
We then tally the number of student responses with each 
answer vector.  Then, for each response with at least one 
student, we compare the response with all IDRs and choose 
the one closest in Hamming distance.  This distance is 
called the “error” for the student response.  We sum all 
errors over all students to determine the overall error for 
the q-matrix. 

Method 
In this research, we apply the q-matrix method to a large 
group of students and analyze the results in several ways.  
Our hypotheses are: 1) expert and extracted q-matrices will 
differ, but extracted q-matrices will be useful in 
interpreting student data, and 2) the q-matrix method can 
be effective in guiding student remediation (at least as 
effective as a student directing his own learning).  
 
The Binary Relations tutorial was administered to over 100 
students in the Fall 2002 Discrete Mathematics course, 
CSC 226, at NC State University.  The tutorial was 
required for credit in the class, but only a completion grade 
was assigned to each student.  Students were randomly 
assigned to guided or self-guided groups.  In the guided 
group, after taking a tutorial quiz, students were 
automatically directed to review a question it was 
determined that the student least understood.  In the self-
guided group, students were asked to choose which 
question on the quiz they least understood, but were not 
redirected to review any particular items.  Students in both 
groups were allowed to review any topics they wished after 
either a q-matrix redirection or listing their least-
understood question.  To receive credit for taking the 
tutorial, students were also required to complete a survey, 
which asked students whether they felt the tutorial knew 
which questions they least understood. 
 
The q-matrices used for directing guided students were 
initialized to those found by Sellers in 1998.  After 
students took the tutorials, their new data was used to 
extract a new set of q-matrices, which are compared with 
expert models, to check our hypothesis that student 
concepts do not always correspond to expert analysis.  

These extracted q-matrices are also examined to 
investigate our hypothesis that they can be used to 
understand student behavior.  Finally, the choices that 
students made for remediation are compared to those made 
by the q-matrix method, and survey results relevant to 
remediation are presented. 
 

Results and Discussion 

Comparison of model with expert analysis 
Jennifer Sellers (1998) designed the binary relations 
tutorial and conducted an experiment to determine if the q-
matrix extracted from student responses corresponded well 
with expert-created q-matrices.  With her small sample of 
students, she found that Sections 1 and 2 corresponded 
well with expert analysis but that section 3 did not.  We 
further tested the hypotheses that the q-matrices formed 
through analyzing student responses will be interpretable 
and perhaps also comparable to an expert analysis of the 
subject.  In this section we compare the three q-matrices 
extracted for the Binary Relations tutorial in Fall 2002 with 
the expert q-matrices generated in Sellers’ experiment.  
  
Expert v. extracted q-matrices for the binary relations 
tutorial section 1 
Section 1 of the binary relations tutorial covers Cartesian 
products and binary relations in general.  The topics in this 
section are listed in Table 2.  In this section we will discuss 
how experts related these topics (and their corresponding 
questions) by concepts, and compare this to the q-matrix 
extracted from the fall 2002 discrete math class. 

Table 2: Binary Relations Tutorial Topics, Section 1 

Section 1 Cartesian Products & Binary Relations 
Question Topic 

q1.1 Cartesian product (one point) 
q1.2 Cartesian product (all points) 
q1.3 Relations as subsets of Cartesian products 
q1.4 Matrix representations of relations 
q1.5 Composite of two relations 

 
Table 3 lists the Section 1 matrix extracted by the q-matrix 
method both in Sellers’ work and in our fall 2002 
experiment.  Table 4 lists the Section 1 matrix created by 3 
instructors in Sellers’ experiment.  Concept 1 in Table 3, 
the extracted q-matrix, corresponds to concept 3 in Table 
4Table 4, the expert q-matrix.  The extracted q-matrix tells 
us several things: most students answered questions 1-4 
correctly, because their predicted answers to those 
questions would be correct answers.  Students found 
question 1.5, that on composite relations, the most difficult.  
This corresponds with the expert analysis of this tutorial.  
It is no surprise that the q-matrix method did not find the 
expert concept 1, since this concept consists of a 
relationship to all the tutorial questions.  In other words, 
this concept was the over-arching concept that relates all 



questions in this tutorial, so most students would 
understand the main concept by the time they took the 
quiz, and their answers would not reflect this relationship 
among all the questions.  Concept 2 in the expert matrix 
relates those questions dealing with relations, which are 
subsets of Cartesian products.  In this tutorial, there was 
not enough difference in responses to extract this concept. 

Table 3: Binary Relations Section 1 Extracted q-matrix 

 q1.1 q1.2 q1.3 q1.4 q1.5 
con 1 0 0 0 0 1 

 
Table 4: Binary Relations Section 1 Expert q-matrix 

 q1.1 q1.2 q1.3 q1.4 q1.5 Description 
con 1 1 1 1 1 1 Cartesian Products 
con 2 0 0 1 1 1 Relations 
con 3 0 0 0 0 1 Composites 

 
Concept 1 represents question 5, which is composition of 
relations.  This is a difficult concept for most students to 
understand.  This q-matrix agrees with that determined for 
Section 1 in Seller’s thesis, both by q-matrix analysis and 
by expert analysis. 
 
Expert v. extracted q-matrices for the binary relations 
tutorial section 2 
The topics taught in section 2 of the Binary Relations 
tutorial are given in Table 5.  This section gives definitions 
and examples of the properties of binary relations.  In this 
section we discuss how experts related these topics by 
concepts, and compare this to the q-matrix extracted from 
the fall 2002 discrete math class. 

Table 5: Binary Relations Tutorial Topics, Section 2 

Section 2 Properties of Binary Relations 
Question Topic 

q2.1 Reflexive 
q2.2 Symmetric 
q2.3 Irreflexive 
q2.4 Antisymmetric 
q2.5 Asymmetric 
q2.6 Transitive 
q2.7 Equivalence relation 
q2.8 Partially-ordered set (poset) 

 
Jennifer Sellers compared her extracted q-matrices to those 
constructed by instructors.  For two of her q-matrices, 
expert and extracted q-matrices corresponded in all but one 
matrix value.  In Table 6, element (2,6) shows the only 
difference between the expert and extracted (auto) q-
matrices for one set of questions.  In this case, instructors 
indicated that concept 2 indicated the application of more 
than one definition, and had a zero in position (con2, q2.6) 
since it corresponds to applying the definition of a 
transitive relation.  However, the extracted q-matrix, with a 

one in that position, reflects that students find applying this 
definition much more complex than applying any 
combination of two other properties of binary relations.  
Upon a second look, experts agreed that this extracted q-
matrix was appropriate. 

Table 6 Binary Relations Section 2 Sellers’ Expert v. 
Extracted Q-matrices 

 q2.1 q2.2 q2.3 q2.4 q2.5 q2.6 q2.7 q2.8 Descrip. 
con 
1 

1 1 1 1 1 1 1 1 Special 
properties 
of 
relations 

con 
2 

0 0 0 0 1 exp 
0/ 

auto 
1 

1 1 Multiple 
properties 

 
In the analysis of fall 2002 data, we extracted a q-matrix 
with 4 concepts.  In Seller’s work, with only 17 students, it 
was more appropriate to extract a q-matrix with fewer 
concepts.  With 2 concepts, we have 4 concept states 
available and expect about 4 students to be assigned to 
each concept state.  With so few students, even a 1-concept 
q-matrix might have been more appropriate.  With 142 
students, the fall 2002 data can support a more complex 
model.  With 4 concepts, there are 16 concept states 
available, so we’d expect an average concept state to 
contain about 8-9 students each.  If we had used 3 
concepts, we’d expect about 18 students in each of 8 states, 
perhaps a bit high for our purposes. 
 
The 4-concept q-matrix for fall 2002 is given in Table 7.  
This q-matrix is quite different from those given by both 
experts and Seller’s previous analysis.  In this matrix, 
questions on antisymmetric (q2.4), equivalence relations 
(q2.7), and partially ordered sets (q2.8) were all partitioned 
into separate concepts.  These questions were the biggest 
separators among students, since 74 out of 142 students 
missed only one question.  Out of the remaining students, 
39 missed only two questions.  This skew towards missing 
only one question caused the q-matrix analysis to work 
harder to separate these large groups of students into 
groups with the lowest error. This resulted in the simple 
separation by the questions causing the most single errors. 
 
In Table 7, concept 1 relates questions on irreflexive (q2.3), 
asymmetric (q2.5), and transitive (q2.6) properties of 
binary relations.  Out of the properties given in this section, 
asymmetric and irreflexive are the two properties whose 
definitions contain negations. These are notorious for 
causing student difficulty.  However, these two properties 
are relatively easy to check in a matrix.  Transitivity, on 
the other hand, has a more complex definition, and is also 
difficult to check for in a matrix.   
 
It makes sense for the irreflexive and asymmetric 
properties to be paired, since an asymmetric relation must 



be both antisymmetric and irreflexive.  Antisymmetric 
(q2.4) was not paired with these since it was grouped on its 
own to explain students who missed this as the only 
question they answered incorrectly.  The transitive 
property (q2.5) was probably grouped with irreflexive and 
asymmetric since, if a student missed more than one 
question, it was probably in this group of three questions. 
 
Concept 2 is only for the antisymmetric property, which 
causes the most difficulty for students in remembering and 
applying its definition.  Concept 3 represents only 
equivalence relations, and concept 4 represents only 
partially ordered sets. Answering these questions on a 
matrix is much more complex than the other properties 
since each of these requires the student to check for three 
properties.  Equivalence relations must be reflexive, 
symmetric, and transitive. Partially ordered sets must be 
reflexive, antisymmetric, and transitive.  The difficulty in 
checking each of these usually lies in checking for 
transitivity.  In addition, it is easy to make a mistake in 
checking for so many properties in one question. 

Table 7: Binary Relations Section 2 Fall 2002 Extracted q-
matrix, 4 concepts, Err/stud: 0.74 

 q2.1 q2.2 q2.3 q2.4 q2.5 q2.6 q2.7 q2.8 
con 1 0 0 1 0 1 1 0 0 
con 2 0 0 0 1 0 0 0 0 
con 3 0 0 0 0 0 0 1 0 
con 4 0 0 0 0 0 0 0 1 
 
We have also listed the q-matrices for Section 2 fall 2002 
data with 3 concepts in Table 8, and for 2 concepts in Table 
9.  As we stated before, the 3-concept model for this 
problem would place about 18 students in each concept 
state, and we’d expect about 36 students per concept state 
for the 2-concept model. As we see below, the errors for 
each of these are more than 1 per student.  The two-
concept q-matrix does not correspond to the 2-concept 
expert q-matrix given in Table 6.   
 
Although each run of the q-matrix method starts with 
random values, it is often the case that q-matrices with 
increasing numbers of concepts have similar or even 
identical concepts.  As we can see by comparing Table 9 
with Table 6, concepts 1 and 4 in the 4-concept q-matrix 
correspond exactly with the concepts in the 2-concept q-
matrix.  Similarly, concept 3 in the 3-concept q-matrix 
(Table 8) appears again in the 4-concept model (Table 7) 
as concept 2. 
 

Table 8: Binary Relations Section 2 Fall 2002 Extracted q-
matrix, 3 concepts, Err/stud: 1.11 

 q2.1 q2.2 q2.3 q2.4 q2.5 q2.6 q2.7 q2.8 
con 1 0 0 0 0 1 1 0 1 
con 2 0 0 1 0 0 1 1 0 
con 3 0 0 0 1 0 0 0 0 

Table 9: Binary Relations Section 2 Fall 2002 Extracted q-
matrix, 2 concepts, Err/stud: 1.27 

 q2.1 q2.2 q2.3 q2.4 q2.5 q2.6 q2.7 q2.8 
con 1 0 0 0 0 0 0 0 1 
con 2 0 0 1 0 1 1 0 0 
 
The recurring nature of concepts in increasing q-matrix 
models indicates that the q-matrix models created are fairly 
robust.  In addition, although the q-matrix method is a 
heuristic hill-climbing method, running the q-matrix 
analysis again has almost always returned the same q-
matrix, even though the q-matrices are started with random 
values each time.  This is another indication that the q-
matrix method may be a robust algorithm. 
 
Expert v. extracted q-matrices for the binary relations 
tutorial section 3 
Section 3 of the binary relations tutorial covers Hasse 
diagrams and properties of these diagrams.  The topics in 
this section are listed in Table 10.  In this section we will 
discuss how experts related these topics (and their 
corresponding questions) by concepts, and compare this to 
the q-matrix extracted from the fall 2002 discrete math 
class. 

Table 10: Topics in Binary Relations Tutorial Section 3 

Section 3 Posets and Hasse Diagrams 
Question Topic 

q3.1 Hasse Diagrams 
q3.2 Maximal elements 
q3.3 Minimal elements 
q3.4 Upper bounds 
q3.5 Lower bounds 
q3.6 Least upper bound 
q3.7 Greatest lower bound 

 
The expert-generated q-matrix for the binary relations 
tutorial, Section 3, from Sellers’ work is given in Table 11.  
Instructors broke this section of 7 questions down into 3 
concepts.  The first concept was named “Hasse diagrams” 
and contained all questions, since this is the general topic 
of this section.  The second concept grouped together 
questions that examined subsets of partially ordered sets 
for upper and lower bounds.  The third concept grouped 
together questions that combined the ideas of maximal and 
minimal elements with upper and lower bounds.   
 
Using the q-matrix method, we would be very unlikely to 
extract concept 1 from this tutorial.  If these questions were 
grouped with a significant group of tutorial questions, not 
all of which were based on Hasse diagrams, we might 
expect the q-matrix method to extract this concept because 
of the relative relationships among these questions in 
comparison to other quiz topics.  When comparing this 
matrix to that extracted for fall 2002, we notice that q3.6 is 
singled out both in the expert and the extracted q-matrices.  
This agreement between instructors and the tutorial 



indicates that, as perceived by experts and by students, 
questions relating to lower bounds are likely to give 
students trouble.  We also see q3.2 and q3.4 grouped 
together in concepts in both models.  This means that more 
students are missing questions on maximal elements and 
upper bounds together, suggesting that students may have a 
hard time interpreting the meaning of upward movement in 
a Hasse diagram. 

Table 11: Binary Relations Section 3 Expert q-matrix 

 q3.1 q3.2 q3.3 q3.4 q3.5 q3.6 q3.7 Expert 
Descrip. 

con 1 1 1 1 1 1 1 1 Hasse 
diagrams 

con 2 0 1 1 1 1 0 0 Groups of 
elements  

con 3 0 0 0 0 0 1 1 Max & min 
 

194 students completed the Binary Relations Section 3 
quiz, and we extracted a 3 concept q-matrix for this data.  
We have 8 concept states, so we expect an average of 25 
students per state.  This is quite a large number for our 
error to be less than one per student on this section, 
indicating that there was quite a bit of overlap in student 
responses.  In fact, there were only 78 distinct answers on 
this tutorial.  The q-matrix extracted from fall 2002 data 
for the binary relations tutorial, section 3 is given in Table 
12.  When we compare this q-matrix with the expert q-
matrix in Table 11, we find that concept 3 is similar in both 
of these – in both, q3.6 and q3.7 are related, but in the fall 
2002 q-matrix, these are also related to q3.4.  
 
In the fall 2002 q-matrix, concept 3 combines questions 
q3.4, q3.6, and q3.7.  These questions are on upper bounds, 
least upper bounds, and greatest lower bounds.  Concepts 2 
and 3 both refer to q3.4 and q3.6, implying that these two 
questions, by being related to 2 concepts each, are more 
complex than other questions.  This concept grouping 
would indicate to instructors that upper bounds and least 
upper bounds were not as well understood as the other 
questions.  This might encourage instructors to add more 
practice working with these ideas, or improving these two 
sections of the tutorial. 
 
In Table 12, concepts 1 and 4 both select one question each: 
concept 1 represents only q3.1 on Hasse diagrams. and 
concept 4 contains only q3.5 on lower bounds.  This 
suggests that some significant groups of students had 
difficulty with these two questions, or that these questions 
were missed alone in the tutorial (i.e. no other questions 
were missed when a student missed one of these). 
 
Concept 2 combines questions q3.2, q3.4, and q3.6 into 
one concept. These questions are on maximal elements, 
upper bounds, and least upper bounds.  This combination is 
significant, since least upper bounds depend on 
understanding upper bounds.  We might also suppose that, 
due to the arrangement of Hasse diagrams, with edges 

leading upward, that students have more difficulty 
interpreting behavior in the poset moving up the diagram, 
as in finding a maximum or an upper bound. 

Table 12: Binary Relations Section 3 Fall 2002 Extracted 
q-matrix, 4 concepts, Err/stud: 0.72 

 q3.1 q3.2 q3.3 q3.4 q3.5 q3.6 q3.7 
con 1 1 0 0 0 0 0 0 
con 2 0 1 0 1 0 1 0 
con 3 0 0 0 1 0 1 1 
con 4 0 0 0 0 1 0 0 

 
 
Summary of comparison of expert and extracted q-
matrices 
In this section, we have compared the extracted q-matrices 
with expert q-matrices created for the Binary Relations 
tutorial.  We have found that there is sometimes overlap in 
the expert and extracted q-matrices, but often these q-
matrices do not correspond.  Since the design of the q-
matrix method of extraction was based on the inaccuracy 
of expert q-matrices in explaining student data, we would 
not expect expert q-matrices to correspond particularly 
well with those extracted from student data.  In some cases, 
we did find a correspondence, and this usually occurred on 
the most difficult or complex questions.   
 
In addition to comparing the expert and extracted q-
matrices, we also examined the extracted q-matrices to 
understand the relationships in the questions in this 
tutorial.  In both sections 2 and 3, the extracted q-matrices 
separated out several questions into one concept each.  In 
this tutorial, we would expect something like this since the 
questions here are very much the application of definitions.  
Many students taking this section missed only 1 or 2 
questions at a time, making a q-matrix with several 1-
question concepts a good model.  As we hypothesized, 
understanding the relationships shown in the q-matrices 
was not difficult, and our interpretations can be used to 
both understand student data and determine which 
questions were most difficult. 
 
Comparison of predicted direction vs. student for 
remediation 
In this experiment, the q-matrix method was effective in 
automatically choosing questions that students least 
understood.  When compared with the choices that students 
made on their own, the q-matrix method chose the same 
question as students did for more than half the students in 
all three sections of the binary relations tutorial, as 
demonstrated in Table 13.  Our intention was to have half of 
the students choose their own progress, and half to be self-
guided, concurrently-running students were often assigned 
the same value for this choice, so fewer students guided 
their own remediation process. 



Table 13 Student v. q-matrix Selection of Least-
Understood Question 

 Section 1 Section 2 Section 3 
Total Students 255 251 246 
Auto-guided 106 204 199 
Self-guided  149 47 47 
# self-guided who 
chose other than 
predicted least 
understood 
concept 

11 14 20 

Percentage 7.38% 29.78% 42.55% 
 

In this experiment, random students were chosen to select 
the question they least understood upon completion of each 
section of the binary relations tutorial.  Most of these 
students chose a question related to the q-matrix predicted 
“least understood concept”.  In Table 13, we see that on 
section 1, only 7% of self-guided students chose to review 
a different question than selected by the q-matrix.  Since 
our q-matrix was a one-concept q-matrix relating only to 
question 5, the most difficult on the quiz, this is not a 
surprising result.  On section 2, 30% of self-guided 
students chose a different question to review than the q-
matrix would have.  This means that 70% of the time the q-
matrix method predicted the same concept to review as 
students did.  On section 3, however, 43% of students 
chose differently than the q-matrix method would have.  
Since this number is high, we cannot conclude that the q-
matrix choice corresponds to student choices often.  This 
result is not discouraging, though, since on a more 
complex topic such as this one, students may need to 
review more than one concept.  In order to better measure 
the choices made by the q-matrix method, for students who 
chose to review questions that the system would not have 
chosen for them, we examine student performance on these 
two questions on the final exam. 
 
Table 14 lists the performance on the final exam of those 
students who chose differently than predicted.  (Since the 
final exam was not required, this data set is much smaller 
than the number of students who took the tutorial). On the 
final exam, these students performed equally or worse on 
the q-matrix predicted questions than they did on the 
questions they selected as those they least understood.  
This suggests that sometimes, a student may not realize 
when he should review a particular topic. 
 
In this small sample, the q-matrix method did at least as 
well as the students did in choosing their “least understood 
question”.  Since we had such a small sample size, we 
cannot conclude more from these data.  We also note that, 
since the final exam was optional, and there may be several 
confounding effects that determine student scores, so these 
results should be interpreted as suggestive and not 
conclusive. Further experiments will be needed to 
determine if the “least-understood question” method is 
truly a good educational choice.   

Table 14: Final Exam for Self-Directed Students 

 Section 1 Section 2 Section 3 
# students with diff choices 11 14 20 
# of these with finals 7 10 13 
# who missed the self-
directed question on the 
final exam 

0 2 0 

# who missed the q-matrix 
predicted question 

2 2 1 

# who performed the  
same on both 

5 6 12 

  
In the tutorial survey, students were asked to agree or 
disagree with the statement, “I felt like the program knew 
which concepts I did not understand, and directed me back 
to lessons on concepts I understood the least.”  Forty-six 
percent of students agreed that the Binary Relations tutorial 
seemed to know what they did not understand and directed 
them to study the concepts they least understood.  Only 
13% of students disagreed, feeling that the tutorial did not 
know which concepts they least understood.   
 
Six percent felt that the best aspect of the tutorial was its 
ability to take students back to review material they did not 
understand.  Some of these pointed out that it would be 
more useful to review these sections a different way, or 
that they wanted to review more than just one topic after 
taking a section test.  Future work will address these 
concerns. 

Final Remarks 
This research represents an initial study of the 
effectiveness of using one data mining technique, the q-
matrix method, in understanding and directing student 
learning. As predicted, expert and extracted q-matrices did 
not often coincide, but we were still able to understand 
student responses based on extracted q-matrices. We also 
compared the questions that self-guided students chose to 
review with the questions that the q-matrix method would 
have chosen for them.  We found that the q-matrix method 
often chose the same questions for review as the self-
guided students chose for themselves.  We also found that 
students who chose differently than the q-matrix method 
could have benefited from reviewing a q-matrix selected 
concept.  However, due to the small sample size of self-
guided students, choosing to review different questions 
than would have been suggested, who also took the final 
exam, these findings are preliminary and not conclusive.   
 
Future work will address several important questions about 
the q-matrix method.  Although the method has been 
validated using simulated students (Brewer, 1996), a 
comparison of q-matrix results on varying class sizes 
would yield a measure of the robustness of the method.  
We also plan to compare error for expert models on 
explaining student performance with q-matrix models. 
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