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Abstract

An autonomous trading agent is a complex piece of soft-
ware that must operate in a competitive economic environ-
ment. We report results of an informal survey of agent de-
sign approaches among the competitors in the Trading Agent
Competition for Supply Chain Management (TAC SCM). We
identify the problem of decision coordination as a crucial el-
ement in the design of an agent for TAC SCM, and we review
the published literature on agent design to discover a wide
variety of approaches to this problem. We believe that the ex-
istence of such variety is an indication that much is yet to be
learned about designing such agents.

Introduction

Organized competitions can be an effective way to drive re-
search and understanding in complex domains, free of the
complexities and risks of operating in open, real-world en-
vironments. Artificial economic environments typically ab-
stract certain interesting features of the real world, such as
markets and competitors, demand-based prices and cost of
capital, and omit others, such as human resources, secondary
markets, taxes, and seasonal demand. The Trading Agent
Competition for Supply-Chain Management (Collins et al.
2005) (TAC SCM) is based on an economic simulation in
which competing autonomous agents operate in a simple
supply-chain scenario, purchasing components, managing a
factory and warehouse, and selling finished products to cus-
tomers.

TAC SCM has been an active competition since 2003, and
the design of the game has been stable since 2005. More
than 50 different teams have participated, and a number
of papers have been published that describe agent designs,
agent and game analyses, and specific methods for model-
ing the markets and decision processes in the simulation.

TAC SCM is an interesting challenge for a number of
reasons, and different groups have approached the problem
from a variety of perspectives, depending on the individual
interests and backgrounds of the participants. For example,
a team that is primarily interested in developing and test-
ing machine-learning techniques will have a very different
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approach to the problem than a team that is primarily inter-
ested in developing methods to solve constrained optimiza-
tion problems under uncertainty. To better understand this
variety, we conducted an informal survey of many of the ac-
tive teams in 2007. In this paper, we report on the results
of that survey, and we explore in some depth and attempt to
classify the variety of approaches we have observed to one
of the special challenges in designing a successful agent for
TAC SCM, the problem of coordinating the various decision
processes.

Overview of the TAC SCM game
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Figure 1: TAC SCM game scenario.
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In a TAC SCM game, each of the competing agents plays
the part of a manufacturer of personal computers. Figure 1
gives a schematic overview of the TAC SCM game. Agents
compete with each other in a procurement market for com-
puter components, and in a sales market for customers. A
game runs for 220 simulated days over about an hour of real
time. Each agent starts with no inventory and an empty bank
account. The agent with the largest bank account at the end



of the game is the winner.

Customers express demand each day by issuing a set of
Request for Quotes (RFQs) for finished computers. Each
RFQ specifies the type of computer, a quantity, a due date,
a reserve price, and a penalty for late delivery. Each agent
may choose to bid on any subset of the day’s RFQs. For
each RFQ, the bid with the lowest price will be accepted, as
long as that price is at or below the customer’s reserve price.
Once a bid is accepted, the agent is obligated to ship the re-
quested products by the due date, or it must pay the stated
penalty for each day the shipment is late. Agents do not see
the bids of other agents, but aggregate market statistics are
supplied to the agents periodically. The customer market
is segmented into a low-cost segment with five products, a
mid-range segment with six products, and a premium seg-
ment with five products. Customer demand in each segment
varies independently through the course of the game by a
random walk with a superimposed Poisson distribution.

Agents assemble computers from parts, which must be
purchased from suppliers. When agents wish to procure
parts, they issue RFQs to individual suppliers, and suppliers
respond with bids that specify price and availability. If the
agent decides to accept a supplier’s offer, then the supplier
will ship the ordered parts on or after the due date. Late ship-
ments are possible because supplier capacity varies from day
to day by a mean-reverting random walk. Supplier prices are
based on the ratio of demand to current uncommitted capac-
ity.

Once an agent has the necessary parts to assemble com-
puters, it must schedule production in its finite-capacity pro-
duction facility. Each computer model requires a specific
set of parts, and a specified number of assembly cycles. As-
sembled computers are added to the agent’s finished-goods
inventory, and may be shipped to customers to satisfy out-
standing orders.

Agent decision processes

An agent for the TAC SCM scenario must make the follow-
ing four basic decisions during each simulated “day” in a
competition:

1. decide what parts to purchase, from whom, and when to
have them delivered (Procurement).

2. schedule its manufacturing facility (Production).

3. decide which customer RFQs to respond to, and set bid
prices (Sales).

4. ship completed orders to customers (Fulfillment).

These decisions are supported by models of the sales and
procurement markets, and by models of the agent’s own pro-
duction facility and inventory situation. The details of these
models and decision processes are the primary subjects of
research for participants in TAC SCM. Many factors, such as
current capacity and outstanding commitments of suppliers,
and sales volumes and price distributions in the customer
market, are not visible to the agents.
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Game balance

The design of TAC SCM was carefully tuned over the first
three years to make the competition interesting and chal-
lenging. The most “obvious” opportunities for strategic ma-
nipulation (Ketter et al. 2004; Wellman et al. 2005) have
been eliminated. Agents must manage their reputations with
respect to each supplier, to discourage agents from making
large requests and then turning down the resulting offers.
Suppliers reserve approximately half of their total capac-
ity at the beginning of the game for future demand, which
makes it very difficult to “corner” the market for some com-
ponent type.

The parameters of the game scenario are set to ensure
that decision coordination among procurement and sales is
at least somewhat challenging. Figure 2 shows the overall
balance between supply and demand. It is a histogram of
the daily customer RFQ count over 200 games, for 40,000
observations. Superimposed on the histogram are the mean
customer demand, the aggregate capacity of six agent facto-
ries, and the expected supplier capacity. The key message
from this balance is that an agent can expect to buy enough
parts to keep its factory busy, but a strategy that simply tries
to keep the factory busy all the time is likely to result in a
large unsold inventory at the end of an average game!. On
the other hand, there are some games in which the agents
cannot supply all the demand, and the variability of the game
can lead to serious imbalances between customer demand
for specific products and the availability of parts to build
them.
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Figure 2: Game balance. Mean customer demand is below
the production capacity of all the agents, and below the ex-
pected availability of parts in the supplier market.

Designs of agents for TAC SCM

We report findings from an informal survey which we sent
to the TAC SCM community via the TAC SCM discussion

'This balance was first introduced in the 2005 competition.
Price wars were a large problem in the early rounds of that compe-
tition until the full-production agents were eliminated



email list in May 2007. The questionnaire was closed by
September 2007 and was completed by the best teams in
previous tournaments. For the reader’s convenience we in-
clude the survey in an appendix. Table 1 lists the teams who
responded to the questionnaire, and Table 2 lists teams that
have published unique TAC SCM agent designs in the lit-
erature, but did not take part in our survey. We categorize
the survey and literature review results according to our un-
derstanding of the research agendas of the teams, and by the
specific architectural emphases the teams identified in their
agent designs (see Table 3). After we compiled the results
into a working paper, we sent it to the participating teams
for a peer review process to ensure the quality of our survey.
In that way we could be sure that we classified their work
correctly. Two teams replied with minor modifications, and
the rest approved our findings regarding the research agenda
categorization.

The DeepMaize team (Kiekintveld et al. 2006) identi-
fies three key issues that a successful TAC SCM agent must
address: dealing with substantial uncertainty in a highly
dynamic economic environment, in competition with other
self-interested agents whose behavior is naturally strategic.
We observe a convergence between these issues and our in-
dependent findings from the TAC SCM questionnaire. Anal-
ysis of the questionnaire results shows how these issues, in
conjunction with a variety of general research agendas, has
driven the architectural styles adopted by the various teams.

The remainder of this section is organized by primary re-
search agenda. The aim is to show how these various re-
search focus areas have led to specific agent design choices.

Constraint optimization

A supply-chain trading agent must make its decisions sub-
ject to a number of internal and external constraints. These
constraints apply to parts of the supply-chain, such as pro-
curement (availability of supplies, reputation), production
(limited production capacity), sales (limited demand, vari-
able pricing), and fulfillment (shipments limited by fin-
ished goods inventory). Nearly all the teams who an-
swered our questionnaire used some form of constraint
optimization, so we list here the ones who highlighted
it. The teams who focus on realtime optimization, Botti-
celli (Benisch et al. 2004), DeepMaize (Kiekintveld et al.
2006), Foreseer (Burke et al. 2006), MinneTAC (Ketter et
al. 2007) use mainly third party optimization packages, in-
cluding CPLEX?, Tlog OPL?, and lp_solve*. An exception
is CMieux (Benisch er al. 2006) which uses an internally-
developed algorithm to solve a continuous knapsack prob-
lem for pricing customer offers.

Machine learning

Many teams use machine learning algorithms to learn from
historical market data and many agents have some ability
to learn during operation to adapt to changing situations.
CMieux (Benisch er al. 2006), DeepMaize (Kiekintveld

http://www.ilog.com/products/cplex/
*http://www.ilog.com/products/oplstudio/
*nttp://sourceforge.net/projects/lpsolve
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et al. 2007), MinneTAC (Ketter et al. 2007), and Tac-
Tex (Pardoe & Stone 2007) identified the need to support
learning and adaptation as primary concerns in the design
of their agents. CMieux, DeepMaize, and TacTex use the
Weka (Witten & Frank 2005)° machine learning tool set.
MinneTAC uses Matlab® in combination with the Netlab’
neural network toolbox to develop and train market mod-
els (economic regimes), and to bootstrap the agent with the
resulting models. At runtime, MinneTAC updates and ad-
justs those models using feedback and machine learning al-
gorithms.

Management of dynamic supply chains

Traditionally, supply chains have been created and main-
tained through the interactions of human representatives of
the various enterprises (component suppliers, manufactures,
wholesalers/distributors, retailer and customers) involved.
However, the recent advent of autonomous trading agents
opens new possibilities for automating and coordinating the
decision making processes between the various parties in-
volved. A good overview of multiagent based supply chain
management outside of TAC SCM is given by Chaib-draa
and Miiller (2006). The TAC SCM simulation is an abstract
model of a highly dynamic direct sales environment (Chopra
& Meindl 2004), as exemplified by Dell Inc.®, for procure-
ment, inventory management, production, and sales.

Several teams have a strong research focus on dy-
namic supply-chain behavior. The best example is prob-
ably CMieux (Benisch et al. 2006), developed by the e-
Supply Chain Management Lab at Carnegie-Mellon Uni-
versity.  Others who identified this focus area include
Foreseer (Burke ef al. 2006), Mertacor (Kontogounis et
al. 2006), MinneTAC (Ketter et al. 2007), and Tian-
calli (Galindo, Ayala, & Lopez 2006). These teams strive
for high flexibility in their agent design, so that they can
easily accommodate changes.

Scalable autonomous agents

The CrocodileAgent (Podobnik, Petric, & Jezic 2006) group
is part of a larger group that focuses on autonomous
agents for management of large-scale telecommunication
networks. They view TAC SCM as a challenge in build-
ing an agent that can operate in a dynamic environment,
but they are also concerned with scalability and other issues
that go far beyond TAC SCM. They base their design on
the JADE (Bellifemine, Caire, & Greenwood 2007)° frame-
work, which is well-proven for large-scale multi-agent sys-
tems with a huge number of entities on both the consumer,
the business, or both sides of a supply chain (such as a tele-
com environment).

Shttp://www.cs.waikato.ac.nz/ml/weka/
*http://www.mathworks.com/
Thttp://www.ncrg.aston.ac.uk/netlab/
$http://www.dell.com/
‘http://jade.tilab.com/



Team

University

Team contact

Botticelli (B)

Brown University (USA)

Amy Greenwald
Victor Naroditskiy

CMieux (CM)

Carnegie Mellon University (USA)

Michael Benisch
Norman Sadeh

CrocodileAgent (CA) | University of Zagreb (Croatia) Ana Petric
Vedran Podobnik
DeepMaize (DM) University of Michigan (USA) Chris Kiekintveld
Michael Wellman
Foreseer (F) Cork Constraint Computation Kenneth Brown
Centre (Ireland) David Burke

Mertacor (M)

Aristotle University of
Thessaloniki (Greece)

Pericles Mitkas
Andreas Symeonidis

MinneTAC (MT) University of Minnesota (USA) John Collins
Wolfgang Ketter
Southampton (S) University of Southampton (UK) Minghua He
Nick Jennings
TacTex (TT) University of Texas (USA) David Pardoe
Peter Stone
Tiancalli (T) Benemerita Universidad Darnes Ayala
Autonoma de Puebla (Mexico) Daniel Galindo

Table 1: Teams participating in the TAC SCM architecture design survey.

Team University Authors
RedAgent (R) McGill University Philipp Keller, Felix-Olivier Duguay,
Doina Precup
PSUTAC (P) Pennsylvania State University (USA) Shuang Sun, Viswanath Avasarala,
Tracy Mullen, John Yen
PhantAgent (PA) | Politehnica University of Bucharest (RO) | Mihai Stan, Bogdan Stan, Adina Magda Florea
Table 2: Unique TAC SCM agent designs from the literature apart from our survey.
Architecture networks.

Some teams identified a specific focus on software archi-
tecture for autonomous agents. CrocodileAgent (Podob-
nik, Petric, & Jezic 2006) and Southampton SCM (He et
al. 2006) have structured their agent decision processes
around the the IKB (Information, Knowledge, and Behavior)
model (Vytelingam et al. 2006), a three layered agent-based
framework. The first layer contains data gathered from
the environment, the second knowledge extracted from the
data, and the third encapsulates the reasoning and decision-
making components that drive agent behavior. An advan-
tage of using JADE is that the separation of I, K & B layers
enables physical distribution of layers on multiple comput-
ers. Information layer agents parse out information from the
TAC SCM server messages, while information and knowl-
edge flows are implemented as JADE agent communication-
based messages. The CrocodileAgent team reported that
the separation of I, K & B layers and the introduction of
JADE agent platform to the TAC SCM domain causes a
much more complex system with lots of intercommunica-
tion. CrocodileAgent deals with this overhead in TAC SCM,
since their main agenda is to use JADE agents in their re-
search regarding the next generation of telecommunication
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The MinneTAC team has developed an architecture that
separates the four major decision processes into separate
components, and attempts to minimize the learning curve for
a researcher who wishes to work on a specific subproblem.

PSUTAC (Sun et al. 2004) employs an expert system
for decision making. The agent has two functional mod-
ules: a database that keeps track of all transactional data
and a knowledge base centered kernel. The database records
daily transactions and decisions. As opposed to the machine
learning agents described above, in PSUTAC human design-
ers analyze data and code knowledge for the agent offline
and then transfer it into the knowledge base, which is imple-
mented in Jess'”.

Empirical game theory

The DeepMaize (Jordan & Wellman 2007) team is devel-
oping methods for empirical game-theoretic analysis as a
major research emphasis. They employ an experimental
methodology for explicit game-theoretic treatment of multi-
agent systems simulation studies. For example, they have

Yhttp://herzberg.ca.sandia.gov/



Research Agenda Team Architectural Emphasis
Constraint optimization | B, CM, F, MT 3rd party packages
CM, DM Internal optimization methods
Machine learning CM, DM, MT, TT External analysis framework, 3rd party packages
Dynamic supply-chain CM,EM, T Flexibility
Scalability CA Distributed Computation
Architecture CA IKB model for physical distribution
MT Blackboard architecture with evaluator chain
P Knowledge-based architecture with central repository
R Sequence of internal market places
Empirical game theory DM External analysis framework
Decision coordination CM, DM, M, PA, R, S | Modularity
Dealing with uncertainty | B, F, S, MT Modularity
PA Simple heuristics

Table 3: Identified research agendas

developed a bootstrap method to determine the best config-
uration of the agent behavior in the presence of adversary
agents (Jordan, Kiekintveld, & Wellman 2007). They also
use game-theoretic analysis to assess the robustness of tour-
nament rankings to strategic interactions. Many of their ex-
periments require hundreds to thousands of simulations with
a variety of competing agents. To support their work they
have developed an extensive framework for setting up and
running experiments, and for gathering and analyzing the
resulting data'!.

Dealing with uncertainty

TAC SCM is designed to force agents to deal with un-
certainty in many dimensions. Sodomka et al. (Sodomka,
Collins, & Gini 2007) provide a good overview of the
sources of uncertainty in the context of an empirical study
of agent performance. The Botticelli group clearly identi-
fies the problem of dealing with uncertainty as one of their
main research goals in (Benisch et al. 2004). Southampton-
SCM (He et al. 2006) employs a bidding strategy that uses
fuzzy logic to adapt prices according to the uncertain market
situation.

The key architectural decision in Foreseer (Burke er al.
20006) is that all constraint optimization models used in the
agent are subject to uncertainty. In Foreseer both the cus-
tomer bidding model and the component procurement model
are subject to uncertainty. Both are parameterized, such that
probability distributions representing the current belief of
the state of the market can be passed into and used by the
models. Given the uncertainty of the market, these beliefs
allow Foreseer to represent different possible market states
with different probabilities.

MinneTAC (Ketter et al. 2007; 2008) observes conditions
in the customer market to characterize the microeconomic
situation of the market, economic regimes, and predict fu-
ture market regimes. This approach represents the uncer-
tainty of the market as a probability distribution across eco-
nomic regimes. The agent can use this information to make

''P. Jordan, private communication

of teams and their architectural emphases.
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both tactical decisions, such as pricing, and strategic deci-
sions, such as product mix and production planning.

Decision coordination

The supply-chain scenario places a premium on effective co-
ordination of decisions affecting multiple markets and inter-
nal resources. There are many different ways to coordinate
these decisions, and the next section is dedicated to examin-
ing a variety of these methods in more detail.

In this kind of setting it is advantageous to be able to re-
place individual decision-oriented components of an agent
and compare their performances, e.g. two different sales
modules compared on final profit. Many teams mentioned
“modularity” as a specific goal for their designs, but we
think that this is really a precondition that allows this sort
of experimental flexibility.

Decision coordination is an explicit emphasis for the
CMieux (Benisch er al. 2006), DeepMaize (Kiekintveld
et al. 2006), Mertacor (Chatzidimitriou et al. 2007), and
Southampton (He ef al. 2006) teams. This problem is com-
monly viewed as one of enabling independent decision pro-
cesses to coordinate their actions while minimizing the need
to share representation and implementation details.

Southampton uses the hierarchical IKB approach, in
which the Knowledge layer can be viewed as a type of black-
board. DeepMaize (Kiekintveld ez al. 2006) treats the com-
bined decisions as a large optimization problem, decom-
posed into subproblems using a ‘“value-based” approach.
The result is that much of the coordination among decision
processes is effectively managed by assigning values to fin-
ished goods, factory capacity, and individual components
over an extended time horizon.

We now focus in some detail on the decision coordination
methods used by a variety of agent designs.

Agent coordination mechanisms

A successful agent design must provide a way to coordi-
nate the agent’s procurement, sales, production, and fulfill-
ment decisions effectively, whether or not the problem of



decision coordination is an explicit element of a group’s re-
search agenda. This is a fundamental challenge of the TAC
SCM scenario. Two of the four agent decision problems,
procurement and sales, are dominated by the variability of
the game scenario and are strongly affected by the actions
of other agents, while the production-scheduling and fulfill-
ment decisions are internal to the agent and less affected by
the inherent variability in the game. Because of this, some
agent designs simply fold fulfillment into the sales problem,
and production scheduling is sometimes also bundled into
sales, especially for agents that use a make-to-order produc-
tion strategy.

Simply stated, a solution to coordination problem will
maximize (expected) profit over an entire game, subject to
availability of individual part types in the supplier market,
demand in the customer market, and capacity of the agent’s
factory. Of course, prices and availability in the supplier
market are at least partly determined by the behavior of other
agents in the simulation. In addition, prices in the customer
market are almost always determined by the behavior of the
other agents, since competition almost always keeps prices
well below customer reserve prices.

As we shall see, many approaches to the coordination
problem have been tried, and there is little evidence from
tournament standings that any of these approaches domi-
nates the others. In fact, a study by Jordan et al. (2007) has
shown that no single dominant strategy has yet been found,
and our analysis shows that the top three agents in the Jor-
dan study, namely TacTex, DeepMaize, and PhantAgent, use
different coordination mechanisms. We do know that the
“push” strategy that was popular in the 2003 and 2004 com-
petitions (for example, Benisch et al. (2004)) is not effec-
tive, because the factory can produce more than can be sold
at a profit, at least in expectation. This approach attempts
to purchase enough parts early in the game to keep factory
utilization high for the entire game, thereby eliminating pro-
curement from the coordination problem.

In the following sections, we explore the variety of co-
ordination approaches that we have observed among pub-
lished agent designs. We note that none of them have tried
to solve the general problem in its entirety, presumably be-
cause the variability inherent in the simulation and the diffi-
culty of predicting the behaviors of other agents have so far
defeated all attempts to do so. Therefore, what we see is that
each design has chosen a more manageable approach, one
that simplifies the problem through approximations, through
heuristics, and through focus on much shorter time horizons
than the entire game.

Predicted sales volume

Because the balance of supply, demand, and production ca-
pacity in the simulation design has defeated a simple “push”
approach to coordination, the next obvious choice would
seem to be adoption of a “pull” approach, in which sales
activities pull finished goods through the factory, which in
turn pulls in components through the procurement market.
A good example of this approach is Southampton-
SCM (He et al. 2006). This agent was a finalist in the
2004 competition, and placed second in 2005. Figure 3 is
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a schematic representation of this design. In Southampton-
SCM, a Customer Agent uses fuzzy reasoning to compute
offer prices, based on inventory level, customer demand, and
time in the game'?. Priority is given to the products with
the highest expected per-unit profit. The Component Agent
buys a portion of its components with long lead-times, be-
cause prices tend to be lower with longer lead times. The
remaining component inventory is purchased with shorter
lead times, in response to observed customer demand and
to depletion of inventory by sales to customers. The Factory
Agent primarily builds outstanding customer orders, and if it
has spare capacity and available parts, it builds up a modest
inventory of finished goods.
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Figure 3: SouthamptonSCM: Coordination primarily by the
Customer Agent.

The MinneTAC agent (Collins, Ketter, & Gini 2008),
shown in Figure 4, can be configured in a number of dif-
ferent ways, but the configuration used in the 2007 com-
petition solved a linear program each day to maximize ex-
pected profit over a 20-day horizon, subject to constraints on
production capacity, customer demand, and inventory. The
current-day “sales quota” was used by the Sales Manager
to set prices in the customer market, and future-day quotas
were used by the Supplier Manager to drive procurement.
MinneTAC was a finalist in the 2005 and 2006 competitions.

MinneTAC
Supplier Supplier Order]
[ Manager ] [ Manager Ol
wn
g RFQs RFQs 5
5 | doffers > Repository < offers | o | £
) orders orders £
) Deliveries Deliveries 3
Production Delivery Sales
Manager Manager Manager

Figure 4: MinneTAC: Coordination through the Repository,
details depend on configuration.

As we can see from Figure 4, MinneTAC uses a very dif-
ferent design approach from the other agents we examine

12 A separate rule set is used near the end of the game, because of
the need to exhaust inventory and because prices tend to be much
more volatile late in the game



here. The Repository acts as a “blackboard”, and the vari-
ous components interact only through the Repository. The
Oracle component is a wrapper for a large number of small
modules, called “Evaluators”, that can be strung together as
specified in a configuration file to do the necessary analysis
and prediction tasks requested by the decision components.
The actual coordination among decision components hap-
pens because they share some of those Evaluators. Specifi-
cally, both the Sales Manager and the Supplier Manager use
the sales quotas produced by one of the Evaluators.

Future production schedule

DeepMaize (Kiekintveld et al. 2006) coordinates its de-
cisions through a principled approach called “value-based
decomposition”. In this approach, a long-term production
schedule is constructed by incrementally adding the prod-
ucts that are expected to return the highest profit. The gen-
eral scheme is shown schematically in Figure 5.

State DeepMaize —
Estimation
Supply Mkt. Customer Mkt.
Predictions Predictions
4
aﬂ) Long—term £
= Component | Production L | proqyct £
e Values Schedule Values 3
(2]
f l F lt : ]
» actory
<< lProcurement ] [ Scheduling Sales
) —J

Figure 5: DeepMaize: Coordination through a long-term
production schedule, using value-based decomposition.

This approach depends on pricing models in both the cus-
tomer and supplier markets that effectively capture price-
quantity tradeoffs. The two prediction components shown
in the diagram, along with an off-line machine-learning pro-
cess, are responsible for producing those models. Given a
long-term production schedule, the Procurement module at-
tempts to provide the necessary components to fill it, and
Sales uses it to set prices in the customer market. Deep-
Maize has been a finalist in all of the TAC SCM tourna-
ments. It placed third in 2006 and 2007.

Inventory management

Three published agent designs appear to focus on an inven-
tory model to coordinate decisions. Mertacor (Chatzidim-
itriou et al. 2007; Kontogounis et al. 2006) is the clearest
example. As we see in Figure 6, an “Inventory Manager”
component is the central element in this design. Mertacor
uses an “Assemble to Order” approach, which is recom-
mended in the literature on inventory management for sit-
uations where assembly times are significantly shorter than
procurement lead times. The Inventory Manager attempts
to maintain component stocks above a minimum threshold,
subject to committed and expected sales, and to committed
deliveries from suppliers. Mertacor placed third in the 2005
competition.

25

< Information
Mertacor )
lead times, prices demand
;FQS RFQs "
2 | offers . offers| &
Q2 > Procurement IREiiEeiRy Bidding > g
5 |orders] Manager orders| &
o |« =
=3 [%]
required available
Ycomponents her
Delivefies _ [ )| Deljveries
Factory
- 1 - >
Goods >

Figure 6: Mertacor: Coordination through the Inventory
Manager.

PhantAgent (Stan, Stan, & Florea 2006) is another design
that appears to focus on inventory management, although as
we see in Figure 7, the inventory management function is
conceptually combined with the procurement function in a
Component Module. The goal of the Component Module is
to maintain expected stocks of each component type within
narrow bounds throughout the game. It computes expected
stocks for each component for each day until the end of the
game, and formulates new supplier orders to make up any
deficits. PhantAgent placed second in 2006, and first in the
2007 competition.
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Figure 7: PhantAgent: Coordination is by inventory control,
originating in the Procurement module.

PhantAgent is interesting in another way. They deal with
the inherent complexity and uncertainty of the TAC SCM
environment, and the resulting strategic inter-dependencies
between their different agent modules, using heuristic ap-
proximations rather than optimization algorithms. Their as-
sessment is that finding optimal solutions to the different
sub-problems does not always lead to the best overall per-
formance.

Another  agent  whose  decision  coordination
mechanism seems focused on inventory control is
CrocodileAgent (Podobnik, Petric, & Jezic 2006;

Petric, Podobnik, & Jezic 2007). The agent drives
procurement to maintain expected component inventory
stocks within defined minimum and maximum bounds.
Similarly, Production operates to maintain a finished goods
inventory within pre-defined bounds. Sales then bids on
customer requests using a simple pricing algorithm, in
an attempt to sell products, profitably, as fast as they are



being produced. When demand is low, the profitability
constraint causes inventory to back up, and production and
procurement to slow down.

Central strategy module

An agent that has very clearly separated the decision coor-
dination issues from the details of procurement, sales, and
production scheduling is CMieux (Benisch et al. 2006), a
finalist in the 2007 competition. A schematic diagram of the
CMieux design is shown in Figure 8.
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Figure 8: CMieux: Coordination by a separate Strategy
module.

The Strategy module sets overall goals for the remainder
of the system, such as the portion of expected demand to
target, and the portion of the production schedule (ATP, the
products Available to Promise) that should be sold to cus-
tomers (DTP, products Desired to Promise). The Forecast
module observes the markets and makes predictions about
demand, prices, and delays in supplier shipments. The In-
ventory Projector combines that with current inventories and
expected supplier deliveries to generate inventory projec-
tions over time. Procurement uses the projected inventory
along with an optimistic version of the production schedule
(what Production would expect to build if there were no in-
ventory constraints) to decide what to order from suppliers,
and supplies Inventory Projector with actual supplier orders.

Separate supply and demand models

The design of TacTex (Pardoe & Stone 2007) is quite dif-
ferent from the others we have reviewed, in the sense that
it does not try to centralize decision coordination at all. In-
stead, it employs a Supply Manager that interacts with sup-
pliers and models the supply market, and a Demand manager
that interacts with customers and models the customer mar-
ket. Coordination is achieved by communication between
these two models. TacTex has been a very strong competi-
tor, placing first in 2005 and 2006, and second in 2007.

In this design, the Supply Manager attempts to minimize
the cost of procuring the components requested by the De-
mand Manager, and provides in return an inventory projec-
tion including current inventory and expected future deliver-
ies, along with replacement cost estimates for each compo-
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Figure 9: TacTex: Coordination is by communication of in-
ventory, cost, and projected usage data between the Supply
Manager and the Demand Manager.

nent type. The Demand Manager, in turn, seeks to maximize
the agent’s profits from sales, subject to constraints from the
customer market, its own production capacity, and the infor-
mation provided by the Supply Manager.

Internal markets

RedAgent (Keller, Duguay, & Precup 2004) is a unique ap-
proach to agent design. It won the first year’s competition
in 2003, but did not do well in 2004 and was never updated
after the rule change in 2005.
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Figure 10: RedAgent: Coordination by a sequence of inter-
nal markets.
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As we can see from Figure 10, RedAgent manages the
flow of components from suppliers through production and
into sales and fulfillment of customer orders through a series
of internal markets. The Bidder observes its inventory sta-
tus and the current prices in its internal finished-goods mar-
kets, and makes offers to customers. Customer orders then
compete for products in the internal product markets, which
are supplied by assemblers for each product type. Those as-
semblers in turn compete for components in internal compo-
nent markets, which are supplied by individual component
agents. The component agents then interact with suppliers in
order to set prices and supply their markets. RedAgent used
loosely-coupled ““sub-agents” competing with each other in
internal auction-based markets for finished goods, produc-
tion capacity, and components. This achieved a radical de-
coupling of the various components, but proved to be un-
competitive after the game design was adjusted in 2005 to
defeat some of the simplest approaches that lacked adequate
coordination among decisions. Specifically, agents that fo-
cused procurement only on keeping the factory in full pro-
duction found themselves overproducing when the balance



between factory capacity and expected customer demand
was adjusted.

Conclusions and Future Work

We have presented a brief overview of agent design ideas
and architectures for TAC SCM, using information both
from a survey of agent development teams and from their
published results. The overall survey outcome shows that
there are common themes emerging from the different re-
search groups on how to design a successful agent architec-
ture. These include common software engineering quality
criteria such as modularity, low coupling, and separation of
concerns, in addition to more problem-specific approaches
such as coordination of sales and procurement through in-
ternal models of inventory and prices, and assigning cur-
rent and future value to inventory and production resources.
There are also some strong differences such as how to orga-
nize the communication between the different modules and
which modules should own the data for specific tasks. These
findings, and the fact that after several years of competition
there is still much to be learned, suggest that the recipe for
a full competent supply-chain trading agent is still an un-
solved problem, even for an abstract, constrained environ-
ment like TAC SCM.

We are planning to execute another agent design survey
in a couple of years, and compare the results to the ma-
terial presented here. We will include in the next survey
more detailed questions about the specific research agendas
of the different teams, and we will provide as a guideline the
current categorization. Of course, research agendas might
change and new teams might have different agendas than we
found in this survey. Furthermore, we will include a ques-
tion about agent coordination mechanisms and provide our
findings from this research as a reference. It will be inter-
esting to see the extent to which variations on the designs
we have reported here will spread to other agent teams. This
might indicate that some basic building blocks have been
discovered.

Appendix: TAC SCM Design Questionnaire

We sent out to the TAC SCM community the following sur-
vey questions:

1. Which team do you represent? What has been your role
on the team?

2. What are the main goals of your design apart from win-
ning the game?

3. What are your organizing design principles (architectural
style, major modules and responsibilities)?

4. What are the strengths and weaknesses of your design?
In other words, what is easy and what is hard to do given
your design? To what extent do you feel your design has
met your goals?

5. If you have been in the competition for more than two
years, have you made significant changes in your design
and why?

6. Does your design represent a significant departure from
the Agentware package?
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7. Which significant 3rd party packages have you used, e.g.
Weka, CPlex, Apache Excalibur, Jade, etc.?

8. Have you based your design on a publicly-available agent
design, like TacTex, GeminiJK, or MinneTAC?

9. Have you published information about your agent design?
If yes, where?
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