
Reinforcement Learning via AIXI Approximation

Joel Veness
University of NSW & NICTA

@ . . .

Kee Siong Ng
Medicare Australia & ANU

. @ .

Marcus Hutter
ANU & NICTA

. @ . .

David Silver
University College London

@ .

Abstract

This paper introduces a principled approach for the design
of a scalable general reinforcement learning agent. This
approach is based on a direct approximation of AIXI, a
Bayesian optimality notion for general reinforcement learn-
ing agents. Previously, it has been unclear whether the theory
of AIXI could motivate the design of practical algorithms.
We answer this hitherto open question in the a rmative, by
providing the first computationally feasible approximation to
the AIXI agent. To develop our approximation, we introduce
a Monte Carlo Tree Search algorithm along with an agent-
specific extension of the Context Tree Weighting algorithm.
Empirically, we present a set of encouraging results on a num-
ber of stochastic, unknown, and partially observable domains.

1 Introduction

Consider an agent that exists within some unknown environ-
ment. The agent interacts with the environment in cycles.
At each cycle, the agent executes an action and receives in
turn an observation and a reward. The general reinforcement
learning problem is to construct an agent that, over time, col-
lects as much reward as possible from an initially unknown
environment.

The AIXI agent (Hutter 2005) is a formal, mathematical
solution to the general reinforcement learning problem. It
can be decomposed into two main components: planning
and prediction. Planning amounts to performing an expec-
timax operation to determine each action. Prediction uses
Bayesian model averaging, over the largest possible model
class expressible on a Turing Machine, to predict future ob-
servations and rewards based on past experience. AIXI is
shown in (Hutter 2005) to be optimal in the sense that it will
rapidly learn an accurate model of the unknown environment
and exploit it to maximise its expected future reward.

As AIXI is only asymptotically computable, it is by no
means an algorithmic solution to the general reinforcement
learning problem. Rather it is best understood as a Bayesian
optimality notion for decision making in general unknown
environments. This paper demonstrates, for the first time,
how a practical agent can be built from the AIXI theory.
Our solution directly approximates the planning and predic-
tion components of AIXI. In particular, we use a generali-
sation of UCT (Kocsis and Szepesvári 2006) to approximate
the expectimax operation, and an agent-specific extension of

Copyright 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CTW (Willems, Shtarkov, and Tjalkens 1995), a Bayesian
model averaging algorithm for prediction su x trees, for
prediction and learning. Perhaps surprisingly, this kind of
direct approximation is possible, practical and theoretically
appealing. Importantly, the essential characteristic of AIXI,
its generality, can be largely preserved.

2 The Agent Setting

This section introduces the notation and terminology we will
use to describe strings of agent experience, the true underly-
ing environment and the agent’s model of the environment.

The (finite) action, observation, and reward spaces are de-
noted by , and respectively. An observation-reward
pair or is called a percept. We use to denote the percept
space .

Definition 1. A history h is an element of () (
) .

Notation: A string x1x2 xn of length n is denoted by x1:n.
The empty string is denoted by . The concatenation of two
strings s and r is denoted by sr. The prefix x1: j of x1:n, j
n, is denoted by x j or x j 1. The notation generalises for
blocks of symbols: e.g. ax1:n denotes a1x1a2x2 anxn and
ax j denotes a1x1a2x2 a j 1x j 1.

The following definition states that the environment takes
the form of a probability distribution over possible percept
sequences conditioned on actions taken by the agent.

Definition 2. An environment is a sequence of conditional
probability functions 0 1 2 , where n : n

Density (n), that satisfies

a1:n x n : n 1(x n a n)

xn

n(x1:n a1:n) (1)

In the base case, we have 0() 1.

Equation 1, called the chronological condition in (Hutter
2005), captures the natural constraint that action an has no
e ect on observations made before it. For convenience, we
drop the index n in n from here onwards.

Given an environment ,

(xn ax nan) :
(x1:n a1:n)

(x n a n)
(2)

is the -probability of observing xn in cycle n given history
h ax nan, provided (x n a n) 0. It now follows that

(x1:n a1:n) (x1 a1) (x2 ax1a2) (xn ax nan) (3)

605

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Definition 2 is used to describe both the true (but un-
known) underlying environment and the agent’s subjective
model of the environment. The latter is called the agent’s
environment model and is typically learnt from data. Defi-
nition 2 is extremely general. It captures a wide variety of
environments, including standard reinforcement learning se-
tups such as MDPs and POMDPs.

The agent’s goal is to accumulate as much reward as it can
during its lifetime. More precisely, the agent seeks a policy
that will allow it to maximise its expected future reward up
to a fixed, finite, but arbitrarily large horizon m . For-
mally, a policy is a function that maps a history to an action.
The expected future value of an agent acting under a partic-
ular policy is defined as follows.

Definition 3. Given history ax1:t, the m-horizon expected
future reward of an agent acting under policy : ()

with respect to an environment is

vm(ax1:t) : xt 1:t m

t m

i t 1

Ri(ax t m) (4)

where for t 1 k t m, ak : (ax k), and Rk(aor t m) :
rk. The quantity vm(ax1:tat 1) is defined similarly, except
that at 1 is now no longer defined by .

The optimal policy is the policy that maximises the
expected future reward. The maximal achievable expected
future reward of an agent with history h in environment
looking m steps ahead is Vm(h) : vm(h). It is easy to see
that if h ax1:t ()t, then

Vm(h) max
at 1 xt 1

(xt 1 hat 1) max
at m

xt m

(xt m haxt 1:t m 1at m)

t m

i t 1

ri (5)

We will refer to Equation 5 as the expectimax operation.
The m-horizon optimal action a

t 1
at time t 1 is related to

the expectimax operation by

at 1 arg max
at 1

Vm(ax1:tat 1) (6)

Eqs 4 and 5 can be modified to handle discounted reward,
however we focus on the finite-horizon case since it both
aligns with AIXI and allows for a simplified presentation.

3 Bayesian Agents

In the general reinforcement learning setting, the environ-
ment is unknown to the agent. One way to learn an envi-
ronment model is to take a Bayesian approach. Instead of
committing to any single environment model, the agent uses
a mixture of environment models. This requires committing
to a class of possible environments (the model class), as-
signing an initial weight to each possible environment (the
prior), and subsequently updating the weight for each model
using Bayes rule (computing the posterior) whenever more
experience is obtained.

The above procedure is similar to Bayesian methods for
predicting sequences of (singly typed) observations. The
key di erence in the agent setup is that each prediction is
now also dependent on previous agent actions. We incor-
porate this by using the action-conditional definitions and
identities of Section 2.

Definition 4. Given a model class : 1 2

and a prior weight w
0

0 for each such

that w
0

1, the mixture environment model is

(x1:n a1:n) : w
0

(x1:n a1:n).

The next result follows immediately.

Proposition 1. A mixture environment model is an environ-
ment model.

Proposition 1 allows us to use a mixture environment
model whenever we can use an environment model. Its im-
portance will become clear shortly.

To make predictions using a mixture environment model
, we use

(xn ax nan)
(x1:n a1:n)

(x n a n)
(7)

which follows from Proposition 1 and Eq. 2. The RHS of
Eq. 7 can be written out as a convex combination of model
predictions to give

(xn ax nan) w
n 1

(xn ax nan) (8)

where the posterior weight w
n 1

for is given by

w
n 1

:
w

0
(x n a n)

w
0

(x n a n)
Pr(ax n) (9)

Bayesian agents enjoy a number of strong theoretical per-
formance guarantees; these are explored in Section 6. In
practice, the main di culty in using a mixture environment
model is computational. A rich model class is required if the
mixture environment model is to possess general prediction
capabilities, however naively using (8) for online prediction
requires at least O() time to process each new piece of
experience. One of our main contributions, introduced in
Section 5, is a large, e ciently computable mixture envi-
ronment model that runs in time O(log(log)). Before
looking at that, we will examine in the next section a Monte
Carlo Tree Search algorithm for approximating the expecti-
max operation.

4 Monte Carlo Expectimax Approximation

Full-width computation of the expectimax operation (5)
takes O(m) time, which is unacceptable for all but tiny
values of m. This section introduces UCT, a generalisation
of the popular UCT algorithm (Kocsis and Szepesvári 2006)
that can be used to approximate a finite horizon expectimax
operation given an environment model . The key idea of
Monte Carlo search is to sample observations from the en-
vironment, rather than exhaustively considering all possible
observations. This allows for e ective planning in environ-
ments with large observation spaces. Note that since an envi-
ronment model subsumes both MDPs and POMDPs, UCT
e ectively extends the UCT algorithm to a wider class of
problem domains.

The UCT algorithm has proven e ective in solving large
discounted or finite horizon MDPs. It assumes a generative
model of the MDP that when given a state-action pair (s a)

606

produces a subsequent state-reward pair (s r) distributed
according to Pr(s r s a). By successively sampling trajec-
tories through the state space, the UCT algorithm incremen-
tally constructs a search tree, with each node containing an
estimate of the value of each state. Given enough time, these
estimates converge to the true values.

The UCT algorithm can be realised by replacing the no-
tion of state in UCT by an agent history h (which is always a
su cient statistic) and using an environment model (or h)
to predict the next percept. The main subtlety with this ex-
tension is that the history used to determine the conditional
probabilities must be updated during the search to reflect the
extra information an agent will have at a hypothetical future
point in time.

We will use to represent all the nodes in the search tree,
(h) to represent the node corresponding to a particular his-

tory h, V̂m(h) to represent the sample-based estimate of the
expected future reward, and T (h) to denote the number of
times a node (h) has been sampled. Nodes corresponding
to histories that end or do not end with an action are called
chance and decision nodes respectively.

Algorithm 1 describes the top-level algorithm, which the
agent calls at the beginning of each cycle. It is initialised
with the agent’s total experience h (up to time t) and the
planning horizon m. It repeatedly invokes the S rou-
tine until out of time. Importantly, UCT is an anytime algo-
rithm; an approximate best action, whose quality improves
with time, is always available. This is retrieved by B A -

, which computes at arg max
at

V̂m(ax tat).

Algorithm 1 UCT(h m)

Require: A history h
Require: A search horizon m

1: I ()
2: repeat
3: S (h m)
4: until out of time
5: return B A (h)

Algorithm 2 describes the recursive routine used to sam-
ple a single future trajectory. It uses the S A rou-
tine to choose moves at interior nodes, and invokes the R -

routine at unexplored leaf nodes. The R rou-
tine picks actions uniformly at random until the (remaining)
horizon is reached, returning the accumulated reward. Af-
ter a complete trajectory of length m is simulated, the value
estimates are updated for each node traversed. Notice that
the recursive calls on Lines 6 and 11 append the most recent
percept or action to the history argument.

Algorithm 3 describes the UCB (Auer 2002) policy used
to select actions at decision nodes. The and constants
denote the smallest and largest elements of respectively.
The parameter C varies the selectivity of the search; larger
values grow bushier trees. UCB automatically focuses atten-
tion on the best looking action in such a way that the sample
estimate V̂ (h) converges to V (h), whilst still exploring al-
ternate actions su ciently often to guarantee that the best

Algorithm 2 S (h m)

Require: A search tree
Require: A history h
Require: A remaining search horizon m

1: if m 0 then
2: return 0
3: else if (h) is a chance node then
4: Generate (o r) from (or h)
5: Create node (hor) if T (hor) 0
6: reward r S (hor m 1)
7: else if T (h) 0 then
8: reward R (h m)
9: else

10: a S A (h m)
11: reward S (ha m)
12: end if
13: V̂(h) 1

T (h) 1
[reward T (h)V̂(h)]

14: T (h) T (h) 1
15: return reward

action will be found.
The ramifications of the UCT extension are particu-

larly significant to Bayesian agents described in Section
3. Proposition 1 allows UCT to be instantiated with
a mixture environment model, which directly incorporates
model uncertainty into the planning process. This gives
(in principle, provided that the model class contains the
true environment and ignoring issues of limited computa-
tion) the well known Bayes-optimal solution to the explo-
ration exploitation dilemma; namely, if a reduction in model
uncertainty would lead to higher expected future reward,

UCT would recommend an information gathering action.

Algorithm 3 S A (h m)

Require: A search tree
Require: A history h
Require: A remaining search horizon m
Require: An exploration exploitation constant C 0

1: a : T (ha) 0
2: if then
3: Pick a uniformly at random
4: Create node (ha)
5: return a
6: else

7: return arg max
a

1
m()

V̂(ha) C
log(T (h))

T (ha)

8: end if

5 Action-Conditional CTW

We now introduce a large mixture environment model for
use with UCT. Context Tree Weighting (CTW) (Willems,
Shtarkov, and Tjalkens 1995) is an e cient and theoreti-
cally well-studied binary sequence prediction algorithm that
works well in practice. It is an online Bayesian model av-
eraging algorithm that computes, at each time point t, the

607

probability

Pr(y1:t)
M

Pr(M) Pr(y1:t M) (10)

where y1:t is the binary sequence seen so far, M is a predic-
tion su x tree (Ron, Singer, and Tishby 1996), Pr(M) is the
prior probability of M, and the summation is over all predic-
tion su x trees of bounded depth D. A naive computation

of (10) takes time O(22D

); using CTW, this computation re-
quires only O(D) time. In this section, we outline how CTW
can be extended to compute probabilities of the form

Pr(x1:t a1:t)
M

Pr(M) Pr(x1:t M a1:t) (11)

where x1:t is a percept sequence, a1:t is an action sequence,
and M is a prediction su x tree as in (10). This extension al-
lows CTW to be used as a mixture environment model (Def-
inition 4) in the UCT algorithm, where we combine (11)
and (2) to predict the next percept given a history.

Krichevsky-Trofimov Estimator. We start with a brief re-
view of the KT estimator for Bernoulli distributions. Given
a binary string y1:t with a zeroes and b ones, the KT estimate
of the probability of the next symbol is given by

Prkt(Yt 1 1 y1:t) :
b 1 2

a b 1
(12)

The KT estimator can be obtained via a Bayesian analysis
by putting an uninformative (Je reys Beta(1 2,1 2)) prior
Pr() 1 2(1) 1 2 on the parameter [0 1] of the
Bernoulli distribution. The probability of a string y1:t is
given by

Prkt(y1:t) Prkt(y1)Prkt(y2 y1) Prkt(yt y t)

b(1)a Pr() d

Prediction Su x Trees. We next describe prediction suf-
fix trees. We consider a binary tree where all the left edges
are labelled 1 and all the right edges are labelled 0. The
depth of a binary tree M is denoted by d(M). Each node
in M can be identified by a string in 0 1 as usual: rep-
resents the root node of M; and if n 0 1 is a node in
M, then n1 and n0 represent respectively the left and right
children of node n. The set of M’s leaf nodes is denoted by
L(M) 0 1 . Given a binary string y1:t where t d(M),
we define M(y1:t) : ytyt 1 yt , where t t is the (unique)
positive integer such that ytyt 1 yt L(M).

Definition 5. A prediction su x tree (PST) is a pair (M),
where M is a binary tree and associated with each l L(M)
is a distribution over 0 1 parameterised by l . We call
M the model of the PST and the parameter of the PST.

A PST (M) maps each binary string y1:t, t d(M), to

M(y1:t); the intended meaning is that M(y1:t) is the probability
that the next bit following y1:t is 1. For example, the PST in
Figure 1 maps the string 1110 to M(1110) 01 0 3, which
means the next bit after 1110 is 1 with probability 0.3.

1 0 1

1

����
��

�� 0

��
??

??
?

01 0 3

1

����
��

�� 0

��
??

??
?

00 0 5

Figure 1: An example prediction su x tree

Action-Conditional PST. In the agent setting, we reduce
the problem of predicting history sequences with general
non-binary alphabets to that of predicting the bit represen-
tations of those sequences. Further, we only ever condition
on actions; this is achieved by appending bit representations
of actions to the input sequence without updating the PST
parameters.

Assume 2l for some l 0. Denote by x
x[1 l] x[1]x[2] x[l] the bit representation of x .
Denote by x1:t x1 x2 xt the bit representation
of a sequence x1:t. Action symbols are treated similarly.

To do action-conditional sequence prediction using a PST
with a given model M but unknown parameter, we start with

l : Prkt(1) 1 2 at each l L(M). We set aside an ini-
tial portion of the binary history sequence to initialise the
variable h and then repeat the following steps as long as
needed:

1. set h : h a , where a is the current selected action;

2. for i : 1 to l do

(a) predict the next bit using the distribution M(h);

(b) observe the next bit x[i], update M(h) using (12) ac-
cording to the value of x[i], and then set h : hx[i].

Let M be the model of a prediction su x tree, a1:t an ac-
tion sequence, x1:t a percept sequence, and h : ax1:t . For
each node n in M, define hM n by

hM n : hi1 hi2 hik (13)

where 1 i1 i2 ik t and, for each i,
i i1 i2 ik i hi is a percept bit and n is a prefix of
M(h1:i 1). We have the following expression for the proba-
bility of x1:t given M and a1:t:

Pr(x1:t M a1:t)

t

i 1

l

j 1

Pr(xi[j] M ax iai xi[1 j 1])

n L(M)

Prkt(hM n) (14)

Context Tree Weighting. The above deals with action-
conditional prediction using a single PST. We now show
how we can e ciently perform action-conditional predic-
tion using a Bayesian mixture of PSTs. There are two main
computational tricks: the use of a data structure to represent
all PSTs of a certain maximum depth and the use of proba-
bilities of sequences in place of conditional probabilities.

Definition 6. A context tree of depth D is a perfect binary
tree of depth D such that attached to each node (both inter-
nal and leaf) is a probability on 0 1 .

608

The weighted probability Pn
w of each node n in the context

tree T after seeing h : ax1:t is defined as follows:

Pn
w :

Prkt(hT n) if n is a leaf node;
1
2

Prkt(hT n) 1
2
Pn0

w Pn1
w otherwise.

The following is a straightforward extension of a result
due to (Willems, Shtarkov, and Tjalkens 1995).

Lemma 1. Let T be the depth-D context tree after seeing
h : ax1:t . For each node n in T at depth d, we have

Pn
w

M CD d

2 D d(M)

l L(M)

Prkt(hT nl) (15)

where Cd is the set of all models of PSTs with depth d,
and d(M) is the code-length for M given by the number of
nodes in M minus the number of leaf nodes in M of depth d.

A corollary of Lemma 1 is that at the root node of the
context tree T after seeing h : ax1:t , we have

Pw(x1:t a1:t)
M CD

2 D(M)

l L(M)

Prkt(hT l) (16)

M CD

2 D(M)

l L(M)

Prkt(hM l) (17)

M CD

2 D(M) Pr(x1:t M a1:t) (18)

where the last step follows from (14). Notice that the prior
2 D() penalises PSTs with large tree structures. The con-
ditional probability of xt given ax tat can be obtained from
(2). We can also e ciently sample the individual bits of xt

one by one.

Computational Complexity. The Action-Conditional
CTW algorithm grows the context tree dynamically. Using a
context tree with depth D, there are at most O(tD log())
nodes in the context tree after t cycles. In practice, this is a
lot less than 2D, the number of nodes in a fully grown con-
text tree. The time complexity of Action-Conditional CTW
is also impressive, requiring O(D log()) time to process
each new piece of agent experience and O(mD log())
to sample a single trajectory when combined with UCT.
Importantly, this is independent of t, which means that
the computational overhead does not increase as the agent
gathers more experience.

6 Theoretical Results

Putting the UCT and Action-Conditional CTW algorithms
together yields our approximate AIXI agent. We now inves-
tigate some of its properties.

Model Class Approximation. By instantiating (5) with
the mixture environment model (18), one can show that the
optimal action for an agent at time t, having experienced
ax t, is given by

arg max
at

xt

max
at m

xt m

t m

i t

ri

M D

2 D() Pr(x1:t m M a1:t m)

Compare this to the action chosen by the AIXI agent

arg max
at

xt

max
at m

xt m

t m

i t

ri 2 K() (x1:t m a1:t m)

where class consists of all computable environments
and K() denotes the Kolmogorov complexity of . Both
use a prior that favours simplicity. The main di erence is
in the subexpression describing the mixture over the model
class. AIXI uses a mixture over all enumerable chronolog-
ical semimeasures, which is completely general but incom-
putable. Our approximation uses a mixture of all predic-
tion su x trees of a certain maximum depth, which is still a
rather general class, but one that is e ciently computable.

Consistency of UCT. (Kocsis and Szepesvári 2006)
shows that the UCT algorithm is consistent in finite hori-
zon MDPs and derive finite sample bounds on the estima-
tion error due to sampling. By interpreting histories as
Markov states, the general reinforcement learning problem
reduces to a finite horizon MDP and the results of (Kocsis
and Szepesvári 2006) are now directly applicable. Restating
the main consistency result in our notation, we have

h lim
T (h)

Pr Vm(h) V̂m(h) 1 (19)

Furthermore, the probability that a suboptimal action (with
respect to Vm()) is chosen by UCT goes to zero in the limit.

Convergence to True Environment. The next result,
adapted from (Hutter 2005), shows that if there is a good
model of the (unknown) environment in CD, then Action-
Conditional CTW will predict well.

Theorem 1. Let be the true environment, and Pw

the mixture environment model formed from (18). The -
expected squared di erence of and is bounded as fol-
lows. For all n , for all a1:n,

n

k 1 x k

(x k a k)
xk

(xk ax kak) (xk ax kak)
2

min
M CD

D(M) ln 2 KL((a1:n) Pr(M a1:n)) (20)

where KL() is the KL divergence of two distributions.

If the RHS of (20) is finite over all n, then the sum on the
LHS can only be finite if converges su ciently fast to .
If KL grows sublinear in n, then still converges to (in a
weaker Cesaro sense), which is for instance the case for all
k-order Markov and all stationary processes .

Overall Result. Theorem 1 above in conjunction with
(Hutter 2005, Thm.5.36) imply Vm(h) converges to Vm(h)
as long as there exists a model in the model class that ap-
proximates the unknown environment well. This, and the
consistency (19) of the UCT algorithm, imply that V̂m(h)
converges to Vm(h). More detail can be found in (Veness et
al. 2009).

609

7 Experimental Results

This section evaluates our approximate AIXI agent on a va-
riety of test domains. The Cheese Maze, 4x4 Grid and Ex-
tended Tiger domains are taken from the POMDP litera-
ture. The TicTacToe domain comprises a repeated series of
games against an opponent who moves randomly. The Bi-
ased RockPaperScissor domain is described in (Farias et al.
2007), which involves the agent repeatedly playing Rock-
PaperScissor against an exploitable opponent. Two more
challenging domains are included: Kuhn Poker (Hoehn et
al. 2005), where the agent plays second against a Nash op-
timal player and a partially observable version of Pacman
described in (Veness et al. 2009). With the exception of Pac-
man, each domain has a known optimal solution. Although
our domains are modest, requiring the agent to learn the en-
vironment from scratch significantly increases the di culty
of each of these problems.

Domain bits D m

Cheese Maze 4 16 2 4 5 96 8
Tiger 3 3 2 2 7 96 5
4 4 Grid 4 1 2 1 1 96 12
TicTacToe 9 19683 4 18 3 64 9
Biased RPS 3 3 2 2 2 32 4
Kuhn Poker 2 6 1 4 3 42 2
Pacman 4 65536 2 16 8 64 8

Table 1: Parameter Configuration

Table 1 outlines the parameters used in each experiment.
The sizes of the action and observation spaces are given,
along with the number of bits used to encode each space.
The context depth parameter D specifies the maximal num-
ber of recent bits used by the Action-Conditional CTW pre-
diction scheme. The search horizon is given by the parame-
ter m. Larger D and m increase the capabilities of our agent,
at the expense of linearly increasing computation time; our
values represent an appropriate compromise between these
two competing dimensions for each problem domain.

Figure 2 shows how the performance of the agent scales
with experience, measured in terms of number of interaction
cycles. Experience was gathered by a decaying -greedy
policy, which chose randomly or used UCT. The results
are normalised with respect to the optimal average reward
per time step, except in Pacman, where we normalised to
an estimate. Each data point was obtained by starting the
agent with an amount of experience given by the x-axis and
running it greedily for 2000 cycles. The amount of search
used for each problem domain, measured by the number of

UCT simulations per cycle, is given in Table 2. (The aver-
age search time per cycle is also given.) The agent converges
to optimality on all the test domains with known optimal val-
ues, and exhibits good scaling properties on our challenging
Pacman variant. Visual inspection1 of Pacman shows that
the agent, whilst not playing perfectly, has already learnt a
number of important concepts.

Table 2 summarises the resources required for approxi-
mately optimal performance on our test domains. Timing

1

Figure 2: Learning scalability results

Domain Experience Simulations Search Time

Cheese Maze 5 104 500 0.9s

Tiger 5 104 10000 10.8s

4 4 Grid 2 5 104 1000 0.7s

TicTacToe 5 105 5000 8.4s

Biased RPS 1 106 10000 4.8s

Kuhn Poker 5 106 3000 1.5s

Table 2: Resources required for optimal performance

statistics were collected on an Intel dual 2.53Ghz Xeon. Do-
mains that included a planning component such as Tiger re-
quired more search. Convergence was somewhat slower in
TicTacToe; the main di culty for the agent was learning not
to lose the game immediately by playing an illegal move.
Most impressive was that the agent learnt to play an approx-
imate best response strategy for Kuhn Poker, without know-
ing the rules of the game or the opponent’s strategy.

8 Related Work

The BLHT algorithm (Suematsu and Hayashi 1999) is
closely related to our work. It uses symbol level PSTs for
learning and an (unspecified) dynamic programming based
algorithm for control. BLHT uses the most probable model
for prediction, whereas we use a mixture model, which ad-
mits a much stronger convergence result. A further distinc-
tion is our usage of an Ockham prior instead of a uniform
prior over PST models.

The Active-LZ (Farias et al. 2007) algorithm combines
a Lempel-Ziv based prediction scheme with dynamic pro-
gramming for control to produce an agent that is provably
asymptotically optimal if the environment is n-Markov. We
implemented the Active-LZ test domain, Biased RPS, and
compared against their published results. Our agent was able
to achieve optimal levels of performance within 106 cycles;
in contrast, Active-LZ was still suboptimal after 108 cycles.

U-Tree (McCallum 1996) is an online agent algorithm
that attempts to discover a compact state representation from
a raw stream of experience. Each state is represented as the
leaf of a su x tree that maps history sequences to states. As
more experience is gathered, the state representation is re-
fined according to a heuristic built around the Kolmogorov-

610

Smirnov test. This heuristic tries to limit the growth of the
su x tree to places that would allow for better prediction of
future reward. Value Iteration is used at each time step to up-
date the value function for the learned state representation,
which is then used by the agent for action selection.

It is instructive to compare and contrast our AIXI approx-
imation with the Active-LZ and U-Tree algorithms. The
small state space induced by U-Tree has the benefit of lim-
iting the number of parameters that need to be estimated
from data. This has the potential to dramatically speed up
the model-learning process. In contrast, both Active-LZ and
our approach require a number of parameters proportional
to the number of distinct contexts. This is one of the reasons
why Active-LZ exhibits slow convergence in practice. This
problem is much less pronounced in our approach for two
reasons. First, the Ockham prior in CTW ensures that future
predictions are dominated by PST structures that have seen
enough data to be trustworthy. Secondly, value function esti-
mation is decoupled from the process of context estimation.
Thus it is reasonable to expect UCT to make good local de-
cisions provided Action-Conditional CTW can predict well.
The downside however is that our approach requires search
for action selection. Although UCT is an anytime algo-
rithm, in practice more computation is required per cycle
compared to approaches like Active-LZ and U-Tree that act
greedily with respect to an estimated global value function.

The U-Tree algorithm is well motivated, but unlike
Active-LZ and our approach, it lacks theoretical perfor-
mance guarantees. It is possible for U-Tree to prema-
turely converge to a locally optimal state representation from
which the heuristic splitting criterion can never recover. Fur-
thermore, the splitting heuristic contains a number of con-
figuration options that can dramatically influence its perfor-
mance (McCallum 1996). This parameter sensitivity some-
what limits the algorithm’s applicability to the general rein-
forcement learning problem.

Our work is also related to Bayesian Reinforcement
Learning. In model-based Bayesian RL (Poupart and Vlas-
sis 2008; Strens 2000), a distribution over (PO)MDP pa-
rameters is maintained. In contrast, we maintain an exact
Bayesian mixture of PSTs. The UCT algorithm shares sim-
ilarities with Bayesian Sparse Sampling (Wang et al. 2005);
the key di erences are estimating the leaf node values with a
rollout function and guiding the search with the UCB policy.

A more comprehensive discussion of related work can be
found in (Veness et al. 2009).

9 Limitations

The main limitation of our current AIXI approximation is
the restricted model class. Our agent will perform poorly if
the underlying environment cannot be predicted well by a
PST of bounded depth. Prohibitive amounts of experience
will be required if a large PST model is needed for accurate
prediction. For example, it would be unrealistic to think that
our current AIXI approximation could cope with real-world
image or audio data.

The identification of e cient and general model classes
that better approximate the AIXI ideal is an important area

for future work. Some preliminary ideas are explored in (Ve-
ness et al. 2009).

10 Conclusion

We have introduced the first computationally tractable ap-
proximation to the AIXI agent and shown that it provides
a promising approach to the general reinforcement learn-
ing problem. Investigating multi-alphabet CTW for pre-
diction, parallelisation of UCT, further expansion of the
model class (ideally, beyond variable-order Markov models)
or more sophisticated rollout policies for UCT are exciting
areas for future investigation.

11 Acknowledgements

This work received support from the Australian Research
Council under grant DP0988049. NICTA is funded by the
Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of
Excellence program.

References

Auer, P. 2002. Using confidence bounds for exploitation-
exploration trade-o s. JMLR 3:397–422.

Farias, V.; Moallemi, C.; Weissman, T.; and Roy, B. V. 2007.
Universal Reinforcement Learning. CoRR abs 0707.3087.

Hoehn, B.; Southey, F.; Holte, R. C.; and Bulitko, V.
2005. E ective short-term opponent exploitation in simpli-
fied poker. In AAAI’05, 783–788.

Hutter, M. 2005. Universal Artificial Intelligence: Sequen-
tial Decisions Based on Algorithmic Probability. Springer.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, 282–293.

McCallum, A. K. 1996. Reinforcement Learning with Selec-
tive Perception and Hidden State. Ph.D. Dissertation, Uni-
versity of Rochester.

Poupart, P., and Vlassis, N. 2008. Model-based Bayesian
Reinforcement Learning in Partially Observable Domains.
In ISAIM.

Ron, D.; Singer, Y.; and Tishby, N. 1996. The power of am-
nesia: Learning probabilistic automata with variable mem-
ory length. Machine Learning 25(2):117–150.

Strens, M. 2000. A Bayesian framework for reinforcement
learning. In ICML, 943–950.

Suematsu, N., and Hayashi, A. 1999. A reinforcement
learning algorithm in partially observable environments us-
ing short-term memory. In NIPS, 1059–1065.

Veness, J.; Ng, K. S.; Hutter, M.; and Silver, D. 2009. A
Monte Carlo AIXI Approximation. CoRR abs 0909.0801.

Wang, T.; Lizotte, D.; Bowling, M.; and Schuurmans, D.
2005. Bayesian sparse sampling for on-line reward opti-
mization. In ICML, 956–963.

Willems, F. M.; Shtarkov, Y. M.; and Tjalkens, T. J. 1995.
The Context Tree Weighting Method: Basic Properties.
IEEE Transactions on Information Theory 41:653–664.

611

