Symmetry within Solutions

Marijn Heule
TU Delft
The Netherlands
marijn@heule.nl

Toby Walsh
NICTA and UNSW
Sydney, Australia
toby.walsh@nicta.com.au

Abstract

We define the concept of an internal symmetry. This is a
symmetry within a solution of a constraint satisfaction
problem. We compare this to solution symmetry, which is a map-
ning between different solutions of the same problem. We
argue that we may be able to exploit both types of symmetry
when finding solutions. We illustrate the potential of exploit-
ing internal symmetries on two benchmark domains: Van der
Waerden numbers and graceful graphs. By identifying inter-
nal symmetries we are able to extend the state of the art in
both cases.

Introduction

Symmetry is an important feature of many combinatorial
search problems. To be able to solve such problems, we of-	en need to take account of symmetry. For example, when
finding magic squares (prob019 in CSPLib (Gent and Walsh
1999)), we have the symmetries that rotate and reflect the
square. Factoring such symmetry out of the search space is
often critical when trying to solve large instances of a prob-
lem. Up till now, research on symmetry has mostly focused
on symmetries between different solutions of the same prob-
lem. In this paper, we propose considering in addition the in-
ternal symmetries (that is, symmetries within each solution).
Whilst it appears to be challenging to identify useful internal
symmetries, such symmetries are easy to exploit. We sim-
ply add constraints that restrict search to those solutions
with the required internal symmetry and limit branching to
the subset of decisions that generate a complete solution.
We will demonstrate the value of exploiting internal sym-
metries within solutions with experimental results on two
benchmark domains: Van der Waerden numbers and grace-
ful graphs.

Symmetry between solutions

A symmetry \(\sigma \) is a bijection on assignments. Given a set
of assignments \(A \) and a symmetry \(\sigma \), we write \(\sigma(A) \) for
\(\{ \sigma(a) \mid a \in A \} \). Similarly, given a set of symmetries \(\Sigma \),
we write \(\Sigma(A) \) for \(\{ \sigma(a) \mid a \in A, \sigma \in \Sigma \} \). A special type of
symmetry, called solution symmetry is a symmetry between
the solutions of a problem. Such a symmetry maps solutions
onto solutions. A solution is simply a set of assignments
that satisfy every constraint in the problem. More formally,
we say that a problem has the solution symmetry \(\sigma \) iff \(\sigma \) of
any solution is itself a solution (Cohen et al. 2006). As
such mappings are associativity, and the inverse of a solution
symmetry and the identity mapping are solution symmetries,
the set of solution symmetries \(\Sigma \) of a problem forms a group
under composition. We say that two sets of assignments \(A \) and
\(B \) are in the same symmetry class of \(\Sigma \) iff there exists
\(\sigma \in \Sigma \) such that \(\sigma(A) = B \).

Running example. The magic squares problem is to label
a \(n \times n \) square so that the sum of every row, column and
diagonal are equal (prob019 in CSPLib (Gent and Walsh
1999)). A normal magic square contains the integers \(1 \) to
\(n^2 \). We model this with \(n^2 \) variables \(X_{i,j} \) where \(X_{i,j} = k \) iff
the \(i \)th column and \(j \)th row is labelled with the integer \(k \).

“Lo Shu”, the smallest non-trivial normal magic square has
been known for over four thousand years and is an im-
portant object in ancient Chinese mathematics:

\[
\begin{array}{ccc}
4 & 9 & 2 \\
3 & 5 & 7 \\
8 & 1 & 6 \\
\end{array}
\]

(1)

The magic squares problem has a number of solution sym-
metries. For example, consider the symmetry \(\sigma_d \) that reflects
a solution in the leading diagonal. This map “Lo Shu” onto
a symmetric solution:

\[
\begin{array}{ccc}
6 & 7 & 2 \\
1 & 5 & 9 \\
8 & 3 & 4 \\
\end{array}
\]

(2)

Any other rotation or reflection of the square maps one so-
lution onto another. The 8 symmetries of the square are thus
all solution symmetries of this problem. In fact, there are
only 8 different magic square of order 3, and all are in the
same symmetry class.

One way to factor solution symmetry out of the search
space is to post symmetry breaking constraints. See, for
instance, (Puget 1993; Crawford et al. 1996; Flener et al.
2002; Frisch et al. 2002; Walsh 2006a; 2006b; Law et al.
2007; Walsh 2007). For example, we can eliminate \(\sigma_d \) by
posting a constraint which ensures that the top left corner
is smaller than its symmetry, the bottom right corner. This
selects (1) and eliminates (2).
Symmetry within a solution

Symmetries can also be found within individual solutions of a constraint satisfaction problem. We say that a solution \(A \) contains the internal symmetry \(\sigma \) (or equivalently \(\sigma \) is an internal symmetry within this solution) iff \(\sigma(A) = A \).

Running example. Consider again “Lo Shu”. This contains an internal symmetry. To see this, consider the solution symmetry \(\sigma_{\text{inv}} \) that inverts labels, mapping \(k \) onto \(n^2 + 1 - k \). This solution symmetry maps “Lo Shu” onto a different (but symmetric) solution. However, if we now apply the solution symmetry \(\sigma_{180} \) that rotates the square \(180^\circ \), we map back onto the original solution:

\[
\begin{array}{ccc}
4 & 9 & 2 \\
3 & 5 & 7 \\
8 & 1 & 6 \\
\end{array}
\Rightarrow
\begin{array}{ccc}
6 & 1 & 8 \\
7 & 5 & 3 \\
2 & 9 & 4 \\
\end{array}
= \sigma_{180}
\]

Consider the composition of these two symmetries: \(\sigma_{\text{inv}} \circ \sigma_{180} \). As this symmetry maps “Lo Shu” onto itself, the solution “Lo Shu” contains the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \).

One significant difference between a solution symmetry and an internal symmetry is that a solution symmetry is a property of every solution whilst an internal symmetry is a property of just the given solution.

Running example. Consider the following magic square:

\[
\begin{array}{ccc}
1 & 4 & 13 & 16 \\
14 & 15 & 2 & 3 \\
8 & 5 & 12 & 9 \\
11 & 10 & 7 & 6 \\
\end{array}
\]

\(\sigma_{\text{inv}} \circ \sigma_{180} \) is not an internal symmetry contained within this solution:

\[
\begin{array}{ccc}
1 & 4 & 13 & 16 \\
14 & 15 & 2 & 3 \\
8 & 5 & 12 & 9 \\
11 & 10 & 7 & 6 \\
\end{array}
\Rightarrow
\begin{array}{ccc}
11 & 10 & 7 & 6 \\
8 & 5 & 12 & 9 \\
14 & 15 & 2 & 3 \\
1 & 4 & 13 & 16 \\
\end{array}
= \sigma_{\text{inv}} \circ \sigma_{180}
\]

However, \(\sigma_{\text{inv}} \circ \sigma_{180} \) is an internal symmetry found within the following solution:

\[
\begin{array}{ccc}
1 & 8 & 12 & 13 \\
14 & 11 & 7 & 2 \\
15 & 10 & 6 & 3 \\
4 & 5 & 9 & 16 \\
\end{array}
\]

Thus we can conclude that \(\sigma_{\text{inv}} \circ \sigma_{180} \) is an internal symmetry contained within some but not all solutions of the normal magic squares problem. In fact, 48 out of the 880 distinct normal magic squares of order 4 contain this internal symmetry. On the other hand, \(\sigma_{\text{inv}} \circ \sigma_{180} \) is a solution symmetry of normal magic squares problems of every size.

A solution containing an internal symmetry can often be described by a subset of assignments and one or more symmetries acting on this subset that generate a complete set of assignments. Given a set of symmetries \(\Sigma \), we write \(\Sigma^* \) for the closure of \(\Sigma \). That is, \(\Sigma^0 = \Sigma \), \(\Sigma^i = \{ \sigma_1 \circ \sigma_2 \mid \sigma_1 \in \Sigma, \sigma_2 \in \Sigma^{i-1} \} \), \(\Sigma^* = \bigcup_i \Sigma^i \). Given a solution \(A \), we say the subset \(B \) of \(A \) and the symmetries \(\Sigma \) generate \(A \) iff \(A = B \cup \Sigma^*(B) \). In this case, we also describe \(A \) as containing the internal symmetries \(\Sigma \).

Running example. Consider again the solution (4) which contains the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \). Half this magic square and \(\sigma_{\text{inv}} \circ \sigma_{180} \) generate the whole solution:

\[
\begin{array}{cccc}
1 & 8 & 12 & 13 \\
14 & 11 & 7 & 2 \\
- & - & - & - \\
- & - & - & - \\
\end{array}
\Rightarrow
\begin{array}{cccc}
- & - & - & - \\
- & b+1 & a+1 & - \\
- & - & - & - \\
- & d+1 & c+1 & - \\
\end{array}
\]

In fact, (4) can be generated from just the first quadrant and two symmetries: \(\sigma_{\text{inv}} \circ \sigma_{180} \) and a symmetry \(\tau \) which constructs a \(180^\circ \) rotation of the first quadrant in the second quadrant, decrementing those squares on the leading diagonal and incrementing those on the trailing diagonal (the same symmetry constructs the third quadrant from the fourth). More precisely, \(\tau \) makes the following mappings:

\[
\begin{array}{cccc}
a & b & - & - \\
c & d & - & - \\
- & - & - & - \\
- & - & - & - \\
\end{array}
\Rightarrow
\begin{array}{cccc}
- & - & - & - \\
- & b+1 & a+1 & - \\
- & - & - & - \\
- & d+1 & c+1 & - \\
\end{array}
= \tau
\]

The example hints at how we can exploit internal symmetries within solutions. We will limit search to a subset of the decision variables that generates a complete set of assignments and construct the rest of the solution using the generating symmetries.

Theoretical properties

We identify some properties of internal symmetries that will be used to help find solutions.

Set of internal symmetries within a solution

Like solution symmetries, the internal symmetries within a solution form a group. A solution \(A \) contains a set of internal symmetries \(\Sigma \) (or equivalently \(\Sigma \) are internal symmetries within the solution) iff \(A \) contains \(\sigma \) for every \(\sigma \in \Sigma \).

Proposition 1. The set of internal symmetries \(\Sigma \) within a solution \(A \) form a group under composition.

Proof: The identity symmetry is trivially an internal symmetry. Internal symmetries are also trivially closed under composition. Finally, consider any \(\sigma \in \Sigma \). As \(\sigma(A) = A \), \(\sigma^{-1}(\sigma(A)) = \sigma^{-1}(A) \). That is \(A = \sigma^{-1}(A) \). Hence, the inverse of \(\sigma \) is an internal symmetry. \(\square \)

Symmetries within and between solutions

In general, there is no relationship between the solution symmetries of a problem and the internal symmetries within a solution of that problem. There are solution symmetries of a problem which are not internal symmetries within any solution of that problem, and vice versa. The problem \(Z_1 \neq Z_2 \) has the solution symmetry that swaps \(Z_1 \) with \(Z_2 \), but no solutions of \(Z_1 \neq Z_2 \) contain this internal symmetry. On the other hand, the solution \(Z_1 = Z_2 = 0 \) of \(Z_1 \leq Z_2 \) contains the internal symmetry that swaps \(Z_1 \) and \(Z_2 \), but this is not a solution symmetry of \(Z_1 \leq Z_2 \) (since \(Z_1 = 0, Z_2 = 1 \) is a solution but its symmetry is not). When all solutions of a problem contain the same internal symmetry, we can be sure that this is a solution symmetry of the problem itself.

78
Proposition 2. If all solutions of a problem contain an internal symmetry then this is a solution symmetry.

Proof: Consider any solution \(A \). As all solutions of the problem contain the internal symmetry \(\sigma, \sigma(A) = A \). Hence \(\sigma \) maps \(A \) onto itself, and \(\sigma(A) \) is also a solution. \(\square \)

By modus tollens, it follows that if \(\sigma \) is not a solution symmetry of a problem then there exists at least one solution which does not contain the internal symmetry \(\sigma \).

Symmetries of symmetric solutions

We next consider internal symmetries contained within symmetric solutions. In general, the symmetry of a solution contains the conjugate of any internal symmetry contained within the original solution.

Proposition 3. If the solution \(A \) contains the internal symmetry \(\sigma \) and \(\tau \) is any (other) symmetry then \(\tau(A) \) contains the internal symmetry \(\tau \circ \sigma \circ \tau^{-1} \).

Proof: Consider the action of \(\tau \circ \sigma \circ \tau^{-1} \) on \(\tau(A) \). Now \(\tau(\sigma(\tau^{-1}(\tau(A)))) = \tau(\sigma(A)) \). But as \(A \) contains the internal symmetry \(\sigma, \sigma(A) = A \). Hence \(\tau(\sigma(A)) = \tau(A) \). Thus \(\tau \circ \sigma \circ \tau^{-1} \) maps \(\tau(A) \) onto itself. \(\square \)

In the special case that symmetries commute, the symmetry of a solution contains the same internal symmetries as the original problem. Two symmetries \(\sigma \) and \(\tau \) commute iff \(\sigma \circ \tau = \tau \circ \sigma \).

Proposition 4. If the solution \(A \) contains the internal symmetry \(\sigma \) and \(\tau \) commutes with \(\sigma \) then \(\tau(A) \) also contains the internal symmetry \(\sigma \).

Proof: By Proposition 3, \(\tau(A) \) contains the internal symmetry \(\tau \circ \sigma \circ \tau^{-1} \). But \(\tau \circ \sigma \circ \tau^{-1} = \tau \circ \tau^{-1} \circ \sigma = \sigma \). \(\square \)

Symmetry breaking

Finally, we consider the compatibility of eliminating symmetric solutions and focusing search on those solutions that contain particular internal symmetries. In general, the two techniques are incompatible. Symmetric breaking may eliminate all those solutions which contain a given internal symmetry.

Running example. Consider again the solution (3). This contains the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \) that inverts all values and reflects the square in the vertical axis:

\[
\begin{array}{cccc}
11 & 8 & 14 & 1 \\
10 & 5 & 15 & 4 \\
7 & 12 & 2 & 13 \\
6 & 9 & 3 & 16 \\
\end{array}
\]

\[
\begin{array}{cccc}
\sigma_{\text{inv}} \circ \sigma_{180} & 16 & 13 & 4 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccc}
16 & 13 & 4 & 1 \\
6 & 7 & 10 & 11 \\
9 & 12 & 5 & 8 \\
3 & 2 & 15 & 14 \\
\end{array}
\]

Note that this internal symmetry can only occur within magic squares of even order or of order 1.

Suppose symmetry breaking eliminates all solutions in the same symmetry class as (3) except for a symmetric solution which is a 90° clockwise rotation of (3). This solution does not contain the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \). In fact, this rotation of (3) contains the internal symmetry that inverts all values and reflects the square in the horizontal axis.

We can identify a special case where symmetry breaking does not change any internal symmetry within solutions. Suppose symmetry breaking only eliminates symmetries which commute with the internal symmetry contained within a particular solution. In this case, whilst symmetry breaking may eliminate the given solution, it must leave a symmetric solution containing the given internal symmetry.

Proposition 5. Given a set of constraints \(C \) with solution symmetries \(\Sigma \), we say that a set of symmetry breaking constraints \(S \) is sound iff for every solution of \(C \) there exists at least one solution of \(C \cup S \) in the same symmetry class.

Proof: As \(S \) is sound, there exists a solution \(B \) of \(C \cup S \) with \(\tau \in \Sigma \) with \(B = \tau(A) \). Now \(\tau \) commutes with \(\Sigma \). Therefore by Proposition 4, \(B \) contains the internal symmetry \(\sigma \). \(\square \)

Running example. Consider the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \) contained within some (but not all) normal magic squares. This particular symmetry commutes with every rotation, reflection and inversion solution symmetry of the problem. Hence, if there is a solution with the internal symmetry \(\sigma_{\text{inv}} \circ \sigma_{180} \), this remains true after breaking the rotational, reflection and inversion symmetries. However, as in the last example, there are internal symmetries contained within some solutions (like reflection in the vertical axis) which do not commute with all symmetries of the square.

Exploiting symmetries within solutions

The exploitation of internal symmetries involves two steps: finding internal symmetries, and then restricting search to solutions containing just these internal symmetries. The first step appears challenging. The definition of an internal symmetry is rather weak. There will be many uninteresting internal symmetries contained within a solution. We want to find internal symmetries that are likely to be contained within as yet unsolved instances of our problem. Although we do not yet have an efficient set of automated methods to do this, we can focus on simple symmetries (like the solution symmetries of the problem) and on small and already solved instances of a problem. This may suggest internal symmetries which might be contained in solutions of larger (perhaps open) problems.

Once we have identified an internal symmetry which we conjecture may be contained in solutions of other (perhaps larger) instances of the problem, it is a simple matter to restrict search of a constraint solver to solutions of this form. In general, if we want to find solutions containing the internal symmetry \(\sigma \), we post symmetry constraints of the form:

\[
Z_i = j \Rightarrow \sigma(Z_i = j)
\]
In addition, we can limit branching decisions to a subset of the decisions variables that generates a complete set of assignments. This can significantly reduce the size of the search space. Propagation of the problem and symmetry constraints may prune the search space even further.

Running example. Consider again the problem of finding normal magic squares. We coded this problem in BProlog on a Pentium 4 3.2 GHz processor with 3GB of memory. In addition to the problem constraints, we used symmetry breaking constraints that eliminated most of the rotation, reflection and inversion solution symmetries:

\[
X_{1,1} < \min(X_{1,n}, X_{n,1}, X_{n,n}), \quad X_{1,n} < X_{n,1}, \\
X_{1,1} \leq n^2 + 1 - \max(X_{1,1}, X_{1,n}, X_{n,1}, X_{n,n})
\]

We also used symmetry constraints to ensure a simple internal symmetry was within the solution. Even and odd order magic squares often contain different internal symmetries so we used different symmetry constraints for even and odd \(n \). For even \(n \), we looked for solutions containing \(\sigma_0 \circ \sigma_m \). Recall that this internal symmetry cannot be contained in solutions with odd \(n \) (except \(n = 1 \)). For odd \(n \), we looked instead for solutions containing \(\sigma_{inv} \circ \sigma_{180} \). Hence, we used the following symmetry constraints for \(1 \leq i, j \leq n \):

\[
\begin{align*}
\text{odd}(n) & \rightarrow X_{n+1-j,n+1-i} = n^2 + 1 - X_{i,j} \\
\text{even}(n) & \rightarrow X_{n+1-i,j} = n^2 + 1 - X_{i,j}
\end{align*}
\]

In the following table, we report backtracks \(b \) and time \(t \) in seconds to find an order \(n \) normal magic square using the default branching heuristic, the problem constraints \(\mathcal{P} \), the symmetry breaking constraints \(\mathcal{S} \) and the internal symmetry constraints \(\mathcal{C} \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(P) (\mathcal{P}) b/t</th>
<th>(P + 5) (\mathcal{P}) b/t</th>
<th>(P + 6) (\mathcal{P}) b/t</th>
<th>(P + 5) (\mathcal{P}) b/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0/0.00</td>
<td>1/0.00</td>
<td>1/0.00</td>
<td>12/0.00</td>
</tr>
<tr>
<td>4</td>
<td>1/0.00</td>
<td>7/0.00</td>
<td>13/0.00</td>
<td>10/0.00</td>
</tr>
<tr>
<td>5</td>
<td>56/0.13</td>
<td>48/0.12</td>
<td>228/0.03</td>
<td>38/0.00</td>
</tr>
<tr>
<td>6</td>
<td>94/1.09</td>
<td>192/1.08</td>
<td>959/0.18</td>
<td>959/0.18</td>
</tr>
<tr>
<td>12</td>
<td>24.3/10.05</td>
<td>661/3.89</td>
<td>28.08</td>
<td>28.63</td>
</tr>
</tbody>
</table>

We see that both symmetry breaking and internal symmetry constraints speed up search. In addition, the combination of the two is usually better than either on their own.

Van der Waerden numbers

We illustrate the use of internal symmetries within solutions with two applications where we have been able to extend the state of the art. In the first, we found new lower bound certificates for Van der Waerden numbers. Such numbers are an important concept in Ramsey theory. In the second application, we increased the size of graceful labellings known for a family of graphs. Graceful labellings have practical applications in areas like communication theory.

The Van der Waerden number, \(W(k, l) \) is the smallest integer \(n \) such that if the integers 1 to \(n \) are colored with \(k \) colors then there are always at least \(l \) integers in arithmetic progression. For instance, \(W(2, 3) \) is 9 since the two sets \(\{1, 4, 5, 8\} \) and \(\{2, 3, 6, 7\} \) contain no arithmetic progression of length 3, but every partitioning of the integers 1 to 9 into two sets contains an arithmetic progression of length 3 or more. The certificate that \(W(2, 3) > 8 \) can be represented with the following blocks:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Finding such certificates can be encoded as a constraint satisfaction problem. To test if \(W(k, l) > n \), we introduce the boolean variable \(x_{i,j} \) where \(i \in [0, k], j \in [0, n] \) and constraints that each integer takes one color \(\{V_{i \in [0,k]} x_{i,j}\} \), and that no row of colors contains an arithmetic progression of length \(l \) \((x_{i,a} \wedge \ldots \wedge x_{i,a+d(l-2)} \rightarrow \neg x_{i,a+d(l-1)}\)). This problem has a number of solution symmetries. For example, we can reverse any certificate and get another symmetric certificate. We can also permute the colors and get another symmetric certificate:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Individual certificates also often contain internal symmetry. For example, the second half of the last certificate repeats the first half:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Hence, this certificate contains the internal symmetry that maps \(x_{i,j} \) onto \(x_{i,j+4 \mod 8} \).

In fact, many known certificates can be generated from some simple symmetry operations on just the colors assigned to the first two or three integers. For instance, the first construction method for Van der Waerden certificates (Rabung 1979) made use of the observation that the largest possible certificates for the known numbers \(W(k, l) \) consist of a repetition of \(l-1 \) times a base pattern. All these certificates, as well as all best lower bounds, have a base pattern of size \(m = \frac{n}{l} \). This first method only worked for certificates for which \(m \) is prime. An improved construction method (Herwig et al. 2007) generalises it for non-prime \(m \).

An important concept in both construction methods is the primitive root\(^2\) of \(m \) denoted by \(r \). Let \(p \) be the largest prime factor of \(m \), then \(r \) is the smallest number for which:

\[
r^i \mod m \neq n_j \mod m \quad \text{for} \ 1 \leq i < j < q \quad (7)
\]

We identified four internal symmetries:

\[
\begin{align*}
\sigma_{+m} &: \text{Apply to all elements } x_{i,j} := x_{i,j} + m \mod n \quad (\text{mod } n) \\
\sigma_{+p} &: \text{Apply to all elements } x_{i,j} := x_{i,j} + p \mod m \\
\sigma_{×r} &: \text{Apply to all elements } x_{i,j} := x_{i,j} \times r \mod m \\
\sigma_{×r t} &: \text{At least one subset maps onto itself after applying } x_{i,j} := x_{i,j} \times r \mod m \text{ for } a \in \{1, \ldots, k\}
\end{align*}
\]

Consider the largest known certificate for \(W(5, 3) \) which has 170 elements. For this certificate, \(m = 85, p = 17 \), and \(r = 3 \). Below the base pattern is shown the first 85 elements. Notice that for this certificate \(A, \sigma_{+p}(A) \) and \(\sigma_{×r}(A) \) are also certificates. In fact, after sorting the elements and permuting the subsets, this certificate is mapped onto itself after applying these symmetries.

\footnote{\(1 \)Except for \(W(3, 3) \)}

\footnote{\(2 \)Our use slightly differs from the conventional definition}
Using this method we significantly improved some of the
•
•
W
•
ad
astronomy, cryptography, communication networks and cir-
the absolute difference of the vertices it connects. Graceful
belling. A graph with
\{\sigma\}
check with a constraint solver if
\{\sigma\}
p
apply the symmetries
•
\sigma
•
break solution symmetry by forcing that the first subset of
\sigma
choose
\{\sigma\}
\sigma
\sigma
to partition the elements
\sigma
1
\sigma
\sigma
\{\sigma\}
\sigma
Related work

Several forms of symmetry have been identified and exploited in search. For instance, Brown, Finkelstein and Purdom defined symmetry as a permutation of the variables leaving the set of solutions invariant (Brown, Finkelstein, and Purdom. 1988). This is a subset of the solution symmetries. For the propositional calculus, Krishnamurthy was one of the first to exploit symmetry (Krishnamurthy 1985). He defined symmetry as a permutation of the variables leaving the set of clauses unchanged. Benhamou and Sais extended this to a permutation of the literals preserving the set of clauses (Benhamou and Sais 1992). Perhaps closest to this work is Puget’s symmetry breaking method that considers symmetries which stabilize the current partial set of assignments (Puget 2003). By comparison, we consider only those symmetries which stabilize a complete set of assignments.

Conclusions

We have defined the concept of an internal symmetry within a single solution of a constraint satisfaction problem. We compared this with the existing notion of symmetry between different solutions of the same problem. We demonstrated that we can exploit both types of symmetry when solving constraint satisfaction problems. We illustrated the potential of exploiting internal symmetry on two benchmark domains: Van der Waerden numbers and graceful graphs. By identifying internal symmetries, we were able to extend the state of the art in both cases. With Van der Waerden numbers, we improved two lower bounds by around 10\%. With graceful graphs, we more than doubled the size of the largest known double wheel graph with a graceful labelling.

Acknowledgments

The authors are supported by the Dutch Organization for Scientific Research (NWO) under grant 617.023.611, the Australian Government’s Department of Broadband, Communications and the Digital Economy and the ARC.

References

