Saving Redundant Messages in BnB-ADOPT *

Patricia Gutierrez and Pedro Meseguer
III, Institut d’Investigació en Intel·ligència Artificial
CSIC, Consejo Superior de Investigaciones Científicas
Campus UAB, 08193 Bellaterra, Spain.
patricia|pedro@iiia.csic.es

Abstract
We have found that some messages of BnB-ADOPT are redundant. Removing most of those redundant messages we obtain BnB-ADOPT+, which achieves the optimal solution and terminates. In practice, BnB-ADOPT+ causes substantial reductions on communication costs with respect to the original algorithm.

BnB-ADOPT (Yeoh, Felner, and Koenig 2008) is a reference algorithm for distributed constraint optimization (DCOP), defined as follows. There is a finite number of agents, each holding one variable that can take values from a finite and discrete domain, related by binary cost functions. The cost of a variable assigning a value is the sum of cost functions evaluated on that assignment. The goal is to find a complete assignment of minimum cost by message passing (for details on DCOP definition see (Modi et al. 2005)).

BnB-ADOPT is a depth-first version of ADOPT (Modi et al. 2005), showing a better performance. As ADOPT, it arranges agents in a DFS tree. BnB-ADOPT messages are \(\text{VALE}(i, j, \text{val}, \text{th}) \), \(-i\) informs child or pseudochild \(j \) that it has taken value \(\text{val} \) with threshold \(\text{th} \)-, \(\text{COST}(k, j, \text{context}, \text{lb}, \text{ub}) \) \(-k\) informs parent \(j \) that with \(\text{context} \) its bound are \(\text{lb} \) and \(\text{ub} \)-, and \(\text{TERMINATE}(i, j) \) \(-i\) informs child \(j \) that \(i \) terminates-,. A BnB-ADOPT agent executes the following loop: it reads and processes all incoming messages, and takes value. Then, it sends the following messages: a \(\text{VALUE} \) per child, a \(\text{VALUE} \) per pseudochild and a \(\text{COST} \) to its parent. BnB-ADOPT contexts can be updated by \(\text{VALUEs} \) or \(\text{COSTs} \), while in ADOPT contexts are updated by \(\text{VALUEs} \) only. This is due to timestamps that go with individual values allowing to determine which are more recent (timestamps are called counters referred as \(\text{ID} \) in (Yeoh, Felner, and Koenig 2008)). Here, we assume that the reader has some familiarity with BnB-ADOPT code.

We show that some BnB-ADOPT messages are redundant. Removing most of those redundant messages we obtain BnB-ADOPT+, keeping optimality and termination. BnB-ADOPT+ causes substantial reductions on communication costs, dividing by a factor from 2 to 6 the number of messages (experimental testing on several benchmarks).

Redundant Messages
In the following \(i, j \) and \(k \) are agents executing BnB-ADOPT. Agent \(i \), holding variable \(x_i \), takes value \(v \) when the assignment \(x_i \leftarrow v \) is made and \(i \) informs of it to its neighbors. The state of \(i \) is defined by (1) its value, (2) its context (values of agents located before \(i \) in its branch, timestamps are not part of the context), and (3) for each possible value \(v \) and each \(j \in \text{children}(i) \), the lower and upper bounds \(\text{lb}(v, j), \text{ub}(v, j) \). A message \(\text{msg} \) sent from \(i \) to \(j \) is redundant if at some future time \(t \), the collective effect of other messages arriving \(j \) between \(\text{msg} \) and \(t \) would cause the same effect, so \(\text{msg} \) could have been avoided.

Lemma 1 If \(i \) takes value \(\text{val}_1 \) with timestamp \(t_1 \), and the next value it takes is \(\text{val}_2 \) (possibly equal to \(\text{val}_1 \)) with timestamp \(t_2 \), there is no message with timestamp \(t \) for \(i \) st. \(t_1 < t < t_2 \).

Proof. No \(\text{VALUE} \) is sent from \(i \) with timestamp between \(t_1 \) and \(t_2 \); \(\text{val}_1 \) and \(\text{val}_2 \) are consecutive. \(\text{COSTs} \) build their contexts from \(\text{VALUEs} \): no \(\text{VALUE} \) includes a timestamp between \(t_1 \) and \(t_2 \), so no \(\text{COST} \) will contain it for \(i \).

Theorem 1 If \(i \) sends to \(j \) two consecutive \(\text{VALUEs} \) with the same \(\text{val} \), the second message is redundant.

Proof. Let \(V_1 \) and \(V_2 \) be two consecutive \(\text{VALUEs} \) sent from \(i \) to \(j \) with the same \(\text{val} \) with timestamps \(t_1 \) and \(t_2 \), \(t_1 < t_2 \). When \(V_1 \) reaches \(j \), it may happen:

1. \(V_1 \) does not update \(\text{context}_j[i] \). When \(V_2 \) arrives: (a) \(V_2 \) does not update \(\text{context}_j[i] \). Future messages will be processed as if \(V_2 \) would have not been received, so \(V_2 \) is redundant. (b) \(V_2 \) updates \(\text{context}_j[i] \) which has timestamp \(t \). Either (i) \(t_2 > t > t_1 \) or (ii) \(t_2 > t = t_1 \). (i) is impossible because Lemma 1; (ii) since \(t = t_1 \) the value in \(V_2 \) is already in \(\text{context}_j[i] \). Every future message accepted with timestamp \(t_2 \) of \(\text{context}_j[i] \) would also be accepted if timestamp were \(t_1 \). Since Lemma 1, \(V_2 \) is redundant.

2. \(V_1 \) updates \(\text{context}_j[i] \leftarrow \text{val} \), timestamp \(t_1 \). When \(V_2 \) arrives: (a) \(V_2 \) does not update \(\text{context}_j[i] \); as case (1.a). (b) \(V_2 \) updates \(\text{context}_j[i] \); since \(V_1 \) updated \(\text{context}_j \) and Lemma 1, the timestamp of \(\text{context}_j[i] \) must be \(t_1 \). Updating with \(V_2 \) does not change \(\text{context}_j[i] \) but its timestamp is put to \(t_2 \). Since there are no messages with timestamp between \(t_1 \) and \(t_2 \) (Lemma 1), any future message that could update \(\text{context}_j \) with \(t_2 \) would also update it with \(t_1 \). So \(V_2 \) is redundant.

\(\square \)
Table 1: Experimental results of BnB-ADOPT (first row) compared to BnB-ADOPT$^+$ (second row)

<table>
<thead>
<tr>
<th></th>
<th>(a) Random DCOPs</th>
<th>(b) Meeting Scheduling</th>
<th>(c) Sensor Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Messages</td>
<td>#NCCC</td>
<td>#Cycles</td>
</tr>
<tr>
<td>0.4</td>
<td>1,931,339</td>
<td>11,022,364</td>
<td>653,960</td>
</tr>
<tr>
<td>0.6</td>
<td>68,116,304</td>
<td>508,186,224</td>
<td>1,208,584</td>
</tr>
<tr>
<td>0.7</td>
<td>109,719,300</td>
<td>1,026,001,540</td>
<td>1,219,549</td>
</tr>
<tr>
<td>0.8</td>
<td>293,922,594</td>
<td>2,155,768,354</td>
<td>6,873,799</td>
</tr>
</tbody>
</table>

Theorem 2 If k sends to j two consecutive COSTs with the same context (context, lower/upper bound) and k has not detected a context change, the second message is redundant.

Proof. Let C_1 and C_2 be two consecutive COSTs sent from k to j with the same context, and context$_k$ has not changed between sending them. Any message may arrive to j between C_1 and C_2. Upon reception, the more recent values of C_1 (and later of C_2) are copied in context$_j$ (by PriorityMerge (Yeoh, Felner, and Koenig 2008)). Copying C_2 more recent values in context$_j$ is not essential. Let us assume that these values are not copied. Then, some messages that would have been ignored between C_1 and C_2 will now be accepted. Since there is no context change between C_1 and C_2, these messages will necessarily include contexts compatible with k context, so they will update timestamps only, generating COSTs with the same bounds. At some point, j will receive all the more recent values of C_2 (necessarily before any context change). After this, j will behave as if it would have copied C_2 more recent values. So if those values are not copied, this will not cause any harm. Because of that, our proof concentrates on bounds. When C_1 arrives:

1. C_1 is not compatible with context$_j$, its bounds are discarded. When C_2 arrives: (a) C_2 is not compatible with context$_j$, its bounds are discarded. So, C_2 is redundant. (b) C_2 is compatible with context$_j$, its bounds are included in j. Since C_1 was not compatible, there is at least one agent above j that changed its value, received by j between C_1 and C_2. There are one or several VALUES on its/their way towards k or k descendants. Upon reception, one or several COSTs will be generated. The last of them will be sent from k to j with more updated bounds. C_2 could have been avoided because a more updated COST will arrive to j. C_2 is redundant.

2. C_1 is compatible with context$_j$, its bounds are included. When C_2 arrives: (a) C_2 is not compatible with context$_j$, its bounds are discarded. So, C_2 is redundant. (b) C_2 is compatible with context$_j$, it bounds are included but this causes no change in j bounds, unless bounds are reinitialized. In this case there is at least one agent above j that changed its value, same as case (1.b). C_2 is redundant. □

BnB-ADOPT$^+$
Temporary, we define BnB-ADOPT$^+$ as BnB-ADOPT with the following changes: (1) the second of two consecutive VALUES with the same i, j and val is not sent, (2) the second of two consecutive COSTs with the same k, j, context, lb and ub when k detects no context change is not sent.

Theorem 3 BnB-ADOPT$^+$ terminates with the cost of a cost-minimal solution.

Proof. By Theorems 1 and 2, messages not sent by BnB-ADOPT$^+$ are redundant so they can be eliminated. BnB-ADOPT$^+$ terminates with the cost of a cost-minimal solution (Yeoh, Felner, and Koenig 2008), so BnB-ADOPT$^+$ also. □

But the new algorithm is not efficient because we have ignored thresholds. Aiming at efficiency, we define BnB-ADOPT$^+$ as BnB-ADOPT with the following changes:

1. i remembers for each neighbor j the last message sent,
2. a COST from j to i includes a boolean $ThReq$, set to true when j threshold is initialized to ∞,
3. if j has to send a COST equal to (ignoring timestamps) the last COST sent, the new COST is sent iff (if and only if) j has detected a context change between them,
4. if i has to send j a VALUE equal to (ignoring timestamps) the last VALUE sent, the new VALUE is sent iff the last COST that i received from j had $ThReq = true$; upon reception, this VALUE will update j threshold.

We tested our algorithm on binary random DCOPs, meeting scheduling and sensor network. Binary random DCOPs have 10 variables with 10 values and connectivity: 0.4, 0.6, 0.7, 0.8. Costs are selected randomly from the set $\{0, 100\}$. Results appear in Table 1 (a), averaged over 50 instances. For meeting scheduling and sensor network formulations (Yin 2008), we tested 4 cases representing different hierarchical and topologies scenarios. Results appear in Table 1 (b) and (c), averaged over 30 instances. Experiments on random instances show that our algorithm reduces the number of messages by a factor from 2 to 3 when connectivity increases. For meeting scheduling, messages are reduced by a factor of at least 2, and for sensor networks, by a factor between 3 and 6. We have achieved important savings for all problems tested. BnB-ADOPT$^+$ was able of processing only half of messages (or less) and reach the optimal solution maintaining the number of cycles practically constant.

References

Yin, Z. 2008. USC dcop repository. Meeting scheduling and sensor net datasets.