










Number of activities to schedule
≤ 10 11− 20 21− 30 > 31

Risk 10% Even distribution solutions 0 0 0 0
cc-pSTP solutions 143 16 1 1

Risk 20% Even distribution solutions 0 0 0 0
cc-pSTP solutions 146 17 1 1

Risk 40% Even distribution solutions 28 0 0 0
cc-pSTP solutions 151 19 1 1

Risk minimisation solutions 161 22 2 1
Total number of Scenarios 428 230 165 977

Table 1: Solutions found for different parameters

Method P (Success) (±1− σ)
10% cc-pSTP 0.9012± 0.0018
20% cc-pSTP 0.8059± 0.0051
40% cc-pSTP 0.6250± 0.0198
Min. Risk 0.9372± 0.1801

Table 2: Empirical verification of correctness of solution.

2006); b) by our risk allocation method; and c) by the risk
minimising method (Tsamardinos 2002) for comparison.
Solutions were obtained with SNOPT (Gill, Murray, and
Saunders 2005), a nonlinear optimisation solver designed
for problems with a large number of linear constraints. Table
summarises the difficulty of finding solutions for different

numbers of activities.
As expected, the proportion of feasible problems de-

creases as the number of activities increase. The same
amount of risk must be shared amongst a higher number
of activities. Thus, as the number of uncertain durations in-
crease, we must be more cautious when bounding each un-
certain duration. We must thus consider a larger subset of
outcomes, making robust scheduling harder.

Note that even distribution of risk results in almost no so-
lutions. The risk minimisation method has the largest num-
ber of solutions: if a solution exists, it will be found regard-
less of the risk of the solution. Risk allocation find a compa-
rable number of solutions because there is flexibility in how
the uncertain durations are bounded, restricted only by the
chance-constraint.

The soundness of solutions with respect to the chance-
constraints were tested via Monte Carlo sampling. For each,
50000 samples of the joint outcomes of the uDns were tested
for consistency with Free constraints, given the assignments
to activated times. Table summarises results for the chance-
constrained method and the risk minimisation method. Note
that the chance-constrained solutions were correct, whereas
the variance of the risk minimisation method means no guar-
antees on the probability of success can be provided for its
solutions.

The flip side of robustness is conservatism. For scenarios
where solutions are found via the chance-constrained meth-
ods and the risk minimisation methods, we compare the util-
ity of solution. On average, the 10%, 20%, and 40% cc-pSTP
schedules resulted in last activated time point occurring re-
spectively 5.37%, 6.58% and 6.82% earlier than the risk-
minimisation methods. These represent significant savings
over the risk-minimisation method, which is too conserva-
tive in achieving robustness.
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Figure 3: Computation time as a function of the number of
activities in the scenarios.

Tests were also performed on scalability, with results
summarised in Figure . The runtimes for risk allocation cc-
pSTP empirically scale in polynomial time with the increas-
ing number of constraints, although even problems with over
200 activities took less than 90 seconds with a 2.4GHz pro-
cessor. The risk minimisation method scales similarly to
the cc-pSTP method, although the outliers take significantly
longer. The polynomial complexity is due to the use of
SNOPT for the reduced problems: the sequential quadratic
programming method solves a series of quadratic programs,
each of which is polynomial time in the number of variables.

The empirical validation confirms the soundness of the
cc-pSTP with respect to the chance constraint. Further, the
results show that the solution method scales well in time for
relatively complicated problems. Lastly, it confirms that, by
accepting varying levels of risk, we can derive better solu-
tions than purely risk-averse behaviour.

Contributions
Robust scheduling is crucial in deployable systems. Previ-
ous work focused on purely risk averse scheduling, lead-
ing to unnecessary conservatism. In this paper, we defined
the pSTN structure, as an alternative generalisation of ST-
PUs to that proposed in (Tsamardinos 2002). We further
identified the need for a chance-constrained rather than risk
minimisation approach to robust execution of pSTNs. By
analysis with the new pSTN structure, we leveraged exist-
ing work in the STPU literature to provide solution method
for static scheduling of cc-pSTNs. We empirically validated
the soundness of the method with respect to the chance
constraints on real world inspired-problems, and demon-
strated the extra utility gained by the approach over the risk-
minimisation approach.
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