AAAI Publications, Twenty-Ninth AAAI Conference on Artificial Intelligence

Font Size: 
Are Features Equally Representative? A Feature-Centric Recommendation
Chenyi Zhang, Ke Wang, Ee-peng Lim, Qinneng Xu, Jianling Sun, Hongkun Yu

Last modified: 2015-02-09


Typically a user prefers an item (e.g., a movie) because she likes certain features of the item (e.g., director, genre, producer). This observation motivates us to consider a feature-centric recommendation approach to item recommendation: instead of directly predicting the rating on items, we predict the rating on the features of items, and use such ratings to derive the rating on an item. This approach offers several advantages over the traditional item-centric approach: it incorporates more information about why a user chooses an item, it generalizes better due to the denser feature rating data, it explains the prediction of item ratings through the predicted feature ratings. Another contribution is turning a principled item-centric solution into a feature-centric solution, instead of inventing a new algorithm that is feature-centric. This approach maximally leverages previous research. We demonstrate this approach by turning the traditional item-centric latent factor model into a feature-centric solution and demonstrate its superiority over item-centric approaches.

Full Text: PDF