AAAI Publications, Twenty-Ninth AAAI Conference on Artificial Intelligence

Font Size: 
Detecting Change Points in the Large-Scale Structure of Evolving Networks
Leto Peel, Aaron Clauset

Last modified: 2015-02-21

Abstract


Interactions among people or objects are often dynamic in nature and can be represented as a sequence of networks, each providing a snapshot of the interactions over a brief period of time. An important task in analyzing such evolving networks is change-point detection, in which we both identify the times at which the large-scale pattern of interactions changes fundamentally and quantify how large and what kind of change occurred. Here, we formalize for the first time the network change-point detection problem within an online probabilistic learning framework and introduce a method that can reliably solve it. This method combines a generalized hierarchical random graph model with a Bayesian hypothesis test to quantitatively determine if, when, and precisely how a change point has occurred. We analyze the detectability of our method using synthetic data with known change points of different types and magnitudes, and show that this method is more accurate than several previously used alternatives. Applied to two high-resolution evolving social networks, this method identifies a sequence of change points that align with known external ``shocks'' to these networks.

Keywords


dynamic networks; change-point detection; generative models; model comparison

Full Text: PDF