AAAI Publications, Twenty-Ninth AAAI Conference on Artificial Intelligence

Font Size: 
Multi-View Point Registration via Alternating Optimization
Junchi Yan, Jun Wang, Hongyuan Zha, Xiaokang Yang, Stephen M. Chu

Last modified: 2015-03-04

Abstract


Multi-view point registration is a relatively less studied problem compared with two-view point registration. Directly applying pairwise registration often leads to matching discrepancy as the mapping between two point sets can be determined either by direct correspondences or by any intermediate point set. Also, the local two-view registration tends to be sensitive to noises. We propose a novel multi-view registration method, where the optimal registration is achieved via an efficient and effective alternating concave minimization process. We further extend our solution to a general case in practice of registration among point sets with different cardinalities. Extensive empirical evaluations of peer methods on both synthetic data and real images suggest our method is robust to large disturbance. In particular, it is shown that our method outperforms peer point matching methods and performs competitively against graph matching approaches. The latter approaches utilize the additional second-order information at the cost of exponentially increased run-time, thus usually being less efficient.

Full Text: PDF