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Abstract 
Accurate weather forecasts enhance sustainability by facili-
tating decision making across a broad range of endeavors 
including public safety, transportation, energy generation 
and management, retail logistics, emergency preparedness, 
and many others. This paper presents a method for combin-
ing multiple scalar forecasts to obtain deterministic predic-
tions that are generally more accurate than any of the con-
stituents. Exponentially-weighted forecast bias estimates 
and error covariance matrices are formed at observation 
sites, aggregated spatially and temporally, and used to for-
mulate a constrained, regularized least squares regression 
problem that may be solved using quadratic programming. 
The model is re-trained when new observations arrive, up-
dating the forecast bias estimates and consensus combina-
tion weights to adapt to weather regime and input forecast 
model changes. The algorithm is illustrated for 0-72 hour 
temperature forecasts at over 1200 sites in the contiguous 
U.S. based on a 22-member forecast ensemble, and its per-
formance over multiple seasons is compared to a state-of-
the-art ensemble-based forecasting system. In addition to 
weather forecasts, this approach to consensus may be useful 
for ensemble predictions of climate, wind energy, solar 
power, energy demand, and numerous other quantities. 

 Introduction    
Combining information from multiple forecasts—for in-
stance, via bias correction followed by weighted averag-
ing—has long been known to produce deterministic con-
sensus predictions that are generally more accurate than 
any of the constituent inputs. Consensus methods have 
been successfully used in a wide range of disciplines in-
cluding finance, economics and biomedicine (Clemen 
1989). Within computer science, “blending” or “stacking” 
multiple machine-learned models (Wolpert 1992, Breiman 
1996, Kuncheva 2004) has proven to be highly effective, 
with famous successes such as winning the Netflix prize. 
The focus of this paper is on developing a skillful, practical 
method for producing an automated ensemble consensus of 
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weather forecasts, exploiting the increasing number of 
physics-driven numerical weather prediction (NWP) mod-
els now operationally available to provide a single authori-
tative forecast. Accurate weather forecasts are important 
for daily planning by individuals and families as well as for 
decision support across a broad range of endeavors includ-
ing public safety, transportation, energy generation and 
management, retail logistics, emergency preparedness, and 
many others. Indeed, Lazo et al. (2011) estimated that 
weather variability is responsible for a $485 billion annual 
impact on U.S. economic activity, some portion of which 
could be mitigated by improved weather forecasts.  

Individual physics-based predictive models are limited 
by the accuracy of observations used for initialization and 
by their imperfect representations of physical processes, 
and are subject to both systematic and chaotic excursions. 
Human forecasters commonly combine multiple sources of 
forecast guidance, drawing on training and deep experience 
to account for nonstationarity due to seasons, variable 
weather patterns, and daily heating and cooling cycles; 
spatial inhomogeneity in NWP models’ predictive perfor-
mance, which vary as a function of latitude, altitude, land 
cover, terrain, proximity to water and other factors; ensem-
ble changes, as NWP models are frequently updated; and 
errors in verifying observations. 

 Given their promise for reducing forecaster workload 
and generating more accurate predictions, automated con-
sensus methods that attempt to intelligently combine mul-
tiple weather or climate predictions have received consid-
erable attention in recent years. Thompson (1977) argued 
that a weighted linear combination of two imperfectly cor-
related scalar weather forecasts could reduce the error vari-
ance by 20%. Krishnamurti et al. (1999) fit linear regres-
sions to model ensemble forecast anomalies and showed 
improved mean-squared error (MSE) for seasonal climate, 
global weather, and hurricane forecasts during subsequent 
testing periods. An operational Australian consensus sys-
tem used a recent lookback period to estimate biases for 
several forecast models or derived model output statistics 
(MOS) products, and combined them using weights in-
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versely proportional to their mean absolute errors (MAEs); 
the resulting predictions for several meteorological quanti-
ties were shown to be significantly better than existing 
guidance or operational forecast products (Woodcock and 
Engel 2005, Engel and Ebert 2007). The system was later 
extended to provide gridded forecasts (Engel and Ebert 
2012). DelSole (2007) discussed ridge regression in a 
Bayesian framework and used it to combine seasonal-scale 
NWP model predictions. Peña and van den Dool (2008) 
also utilized ridge regression and incorporated information 
from neighboring pixels to diminish negative combination 
weights in consolidating sea surface temperature forecasts. 
The Dynamically Integrated ForeCast (DICast®) system, 
originally developed at the National Center for Atmospher-
ic Research (Gerding and Myers 2003, Myers and Linden 
2011, Koval et al. 2015), dynamically adjusts input fore-
cast bias estimates and updates combination weights using 
stochastic gradient descent. DICast is the core of the fore-
cast blending methodology currently used by The Weather 
Company to provide billions of unique forecasts to global 
users every day. The stochastic gradient descent approach 
is computationally efficient, requires little storage, and 
adapts to changes in weather regimes or changing NWP 
models. However, (1) adding or removing input forecasts 
is not straightforward; (2) a missing forecast model run 
requires either using an older forecast or setting its weight 
to zero, neither of which is optimal; (3) constraining 
weights or specifying “preferred” weights is not naturally 
included; and (4) the influence of erroneous observations 
cannot easily be corrected after they are incorporated.  

 This paper presents an adaptable regression (AR) ap-
proach to dynamic, spatiotemporal consensus forecasting 
that addresses DICast’s limitations. It incorporates three 
fundamental innovations: (1) formulating the constrained, 
regularized regression with “target” combination weights 
and weight bounds as a quadratic programming problem, 
and providing an approximate but fast solution method;  
(2) incorporating spatiotemporal neighborhood information 
through exponential moving averages and aggregation of 
forecast input error covariance matrices and biases; and  
(3) allowing modulation of bias estimates by a multiplica-
tive factor. The result is a flexible consensus forecasting 
methodology with improved performance.  

Regression methodology 
In the weather forecasting ensemble consensus context, the 
input forecasts for various meteorological variables are 
generated on diverse geospatial grids at operational centers 
all over the world, arrive asynchronously, and are 
downscaled to the desired time resolution and to the loca-
tion of weather stations that provide “truth” observations. 
The time at which a forecast is produced is called its “gen-

eration” time, the future time to which it applies is the 
“valid” time, and the difference between them is the “lead” 
time. For simplicity of notation, we initially assume a sin-
gle target meteorological variable, forecast location and 
valid/lead time in the description below. For consensus 
forecast generation at time t, the ensemble of p input fore-
casts may be represented as vectors �� � �������� �

�� � � � ��, and the system learns corresponding input forecast 
biases ����� and weights �����, producing consensus fore-
casts through the weighted average  
 
(1) �� � �� � � �� � �����
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vector of 1’s and T denotes the matrix transpose. If �� is 
the verifying observation obtained at the forecast valid 
time, then the error in the consensus forecast �� is 
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where �� �  is the bias-corrected error for input forecast i. 
Below, we describe how the bias and the error covariance 
matrix may be estimated from a database of historical fore-
cast errors and how appropriate consensus weights are 
computed. Although the procedure is described using con-
cepts from weather forecasting, it applies to a broad class 
of consensus prediction problems where an ensemble of 
forecasts is continually generated and verified against ob-
servations. 

Estimating bias 
The bias of each input forecast is an estimate of its system-
atic, or expected, error (Wilks 2005). Weather forecast 
errors are functions of location, lead time, valid time of 
day, season, and weather regime, to name a few. Moreover, 
NWP forecast models frequently update their resolution, 
data assimilation and physics schemes, causing their per-
formance statistics to change over time. To accommodate 
these dependencies, the bias for each input forecast i is 
computed for each location, lead time (�����) and valid time 
of day based on that forecast’s past performance. Let 
�� � � �� � �� � �����  denote observed input forecast er-

rors from generation times �� � � �� � �� � ����� � � �

�����. (The inequality reflects the time lag until a verifying 
observation is available.) Then for a bias “learning rate” 
� � �����, the AR method estimates the bias for input fore-
cast i at generation time t via the “modulated” exponential 
moving average (EMA) 
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When � � � and � � �, eq. (3) is simply the standard (un-
weighted) mean of the latest n forecast errors; as � grows 
larger, recent errors are given more influence than older 
ones. Thus, small values of � reduce the impact of random 
error on the bias estimate, whereas increasing � diminishes 
the representativeness error (since recent forecast statistics 
are presumably more like those that will characterize the 
future forecast period); ideally, a happy medium can be 
identified empirically. The non-standard formulation of the 
EMA in eq. (3) allows for temporally unequally-spaced 
error observations and, by explicitly normalizing by the 
exponential weights, avoids the “spinup” problem exhibit-
ed by the more commonly used iterative formulation. The 
multiplicative factor � � ����� allows the bias to be 
“modulated” (nudged toward 0) to address the fact that, 
due to nonstationarity, a backward-looking average may 
tend to overestimate the magnitude of systematic error in 
subsequent forecasts, especially when the input forecasts 
are presumably designed to be unbiased. Said another way, 
multiplying by � � � provides the effect of a Bayesian 
prior centered around 0; more generally, if the prior is cen-
tered around �, the term � � � � should be added to the 
right-hand side of eq. (3).  

Estimating the error covariance 
Let the bias-corrected input forecast errors be denoted by 
�� � � �� � � �����, where �� � ���

, i.e., the bias esti-
mate from eq. (3) that would have been available at fore-
cast generation time ��. The AR method estimates the error 
covariance matrix �� via 
 

(4) �� �� � � � ���� � ��  
��� ������ � �� �

�
���

��� �����
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where � is the covariance learning rate and � is a normaliz-
ing functional that is set to 1 for simplicity, since it does 
not affect the linear regression solution described below. 
Of course, �� �� � � ����� ��, so eq. (4) does not need to be 
computed for all error covariance matrix entries. Similar to 
the bias equation, this formulation addresses the nonsta-
tionarity of forecast ensemble performance by weighting 
more recent samples of the bias-corrected error more heav-
ily than older ones. If � � � and � � ���� � ��, eq. (4) 
reduces to the standard definition of the sample covariance. 

Formulating the regression problem 
If the forecast module error processes were stationary, the 
appropriate choice of learning rates would be � � � � �, 
reducing eqs. (3) and (4) to the usual bias and sample co-
variance computations, respectively. If additionally the 
generation times satisfied �� � � �� � ����� � and 
� � ��� � �, we could find the a posteriori least-squares 

value for w by minimizing the sum of squared errors from 
eq. (2): 
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Here D is the matrix having kth row �� �, and C is the 
error covariance matrix. Eq. (5) has the form of a quadratic 
programming problem. The AR method is based on the 
assumption that eq. (5) remains a good method for compu-
ting w when � and � are allowed to be nonzero in the bias 
and error covariance estimates, respectively, providing a 
tradeoff between the impacts of random error (reduced by 
small learning rates) and non-representativeness (reduced 
via large learning rates) in the context of the nonstationary 
forecasting problem.  

Constraints and regularization 
Since we assume that the input forecasts in the ensemble 
are chosen to have positive skill, we generally restrict the 
solution w of eq. (5) to also satisfy � � �. In fact, we can 
specify lower and upper bounds �

�
� ��� � and 

�
�
� ��� � so long as ���� � � � �

�
�
�. Additionally, 

we may wish to specify a “goal” weight ��  and a diagonal 
regularization matrix � � ������ � ���������. (See Peña 
and van den Dool 2008 for a detailed exploration of ridge 
regression in the context of consensus prediction.) The 
deviation of a solution w from ��  is then quantified by 
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Since the last term of eq. (6) does not depend on w, the 
constrained, regularized version of the regression problem 
specified in eq. (5) is  
 
(7) ������� �
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   ����� ������ � � and �� � � � �
�. 

 
Increasing � will generally drive the solution of eq. (7) 
towards �� , subject to the constraints. When ��

� �, 
increasing � will move the solution towards the “inverse 
variance” solution, i.e., weighting each input forecast in 
inverse proportion to its error variance—the optimal solu-
tion when the input forecast errors are independent. Thus, 
eq. (7) provides the ability to add information to the re-
gression problem, constrain the solutions, and diminish the 
risk of overfitting, which could lead to poor generalization 
and poor forecast accuracy. As an example, a human fore-
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caster “over the loop” could place a lower limit on the 
weight of an input forecast for extrinsic reasons; or specify 
diminishing goal weights ����� for lead times near the end 
of the range of input forecast i to mitigate the discontinuity 
at the lead time when that input forecast disappears from 
the ensemble; or increase � or � to make the solution 
weights more temporally or spatially consistent. In the ex-
perimental results below, we use a fixed value of � � ��

�� 
to help insure that C + R is well-conditioned, and adjust � 
based on empirical sensitivity results.  

Solution 
The quadratic program in eq. (7) can be solved using 
standard optimization libraries, e.g., MATLAB’s 
“quadprog” function. Additionally, if ��

� �� and 
�
�
� �, we may write the Lagrangian for eq. (7) as 
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where � is the Lagrange multiplier. Setting the derivatives 
of L with respect to w and � equal to zero, and using the 
fact that C + R is symmetric, the solution to eq. (7) may be 
obtained by solving the equation 
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for w. When the R is nontrivial, eq. (9) is typically well-
conditioned and straightforward to solve using a linear 
equation solver such as MATLAB’s “linsolve.” If ��

� � 
and �� � �, eq. (9) may be applied iteratively, omitting 
input forecasts whose weights violate the limits and then 
re-solving for the remaining weights to obtain an approxi-
mate but fast solution to eq. (7). When ��

� � or ��
� �, 

a slightly more complicated version of eq. (9) may be use-
ful. After one or more iterations of eq. (9), let A be the set 
of  “clipped” input forecast indices (active constraint indi-
ces), I denote the remaining (inactive constraint) indices, 
� ���  be the submatrix of C consisting of rows in I and 
columns in A, and ���� denote the clipped weights as-
signed. Then, using the fact that R is diagonal, we may 
partition the matrices in eq. (8) and solve for ���� via 
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Eq. (10) may be applied repeatedly, with any weights that 
violate the constraints being “clipped” and assigned to A 
until all weights satisfy the constraints. This method may 
be extended to an exact solution using the approach de-
scribed in Bro and De Jong (1997).  

Aggregation 
The discussion up to this point has focused on determining 
weights and biases for a single location, generation and 
lead time. However, in many situations, input forecast er-
ror statics are similar for neighboring locations and times. 
Aggregating error covariance and bias estimates provides a 
reduction in random error at the expense of incurring an 
increase in representativeness error. The representativeness 
error is limited by defining a neighborhood (or kernel) of 
limited displacements in location, altitude, generation time 
and valid time of day, and by restricting the contribution of 
neighbors. Thus, for �� � ����� and covariance matrices 
computed at the nearest ��  neighborhood points denoted 
with superscripts, we may compute 
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The simple average in eq. (11) may be replaced with varia-
ble weights for each neighbor based on its distance via a 
Gaussian kernel function, for instance. The aggregate �� is 
used in place of C in the regularized regression problem 
described by eq. (7). An aggregated � may be defined 
similarly and used in place of b in producing the consensus 
forecast via eq. (1). However, bias aggregation has shown 
limited value in our temperature forecasting experiments 
and is not used in the results presented below. 

AR consensus forecasting system 
To summarize, the AR consensus forecasting method in-
volves the following steps: 
 

(1) maintain a historical dataset of input forecast values 
and verifying observations at target sites; 

(2) at a forecast generation time, compute input forecast 
biases and error covariances via eqs. (3) and (4); 

(3) aggregate error covariances (optionally, biases) via 
eq. (11) and compute the regularization matrix R; 

(4) solve the quadratic program in eq. (7) for the con-
sensus weights, e.g., using eqs. (9) and (10); and 

(5) produce the consensus forecast via eq. (1). 
 

The AR method requires specification of a number of pa-
rameters, including the bias and error covariance learning 
rates, bias modulation parameter, aggregation coefficients, 
regularization parameters, and weight constraints and goal. 
Weight constraints and goal will generally be specified 
based on extrinsic criteria. For the others, the AR system 
may learn optimal parameters via offline training between 
forecast cycles to minimize root mean squared error 
(RMSE) or another skill metric over the past several fore-
cast days, for instance. However, for the results presented 
below, we do not vary the parameters as a function of time, 
location, or input forecast. 
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Results 
The AR consensus forecasting system was demonstrated 
using hourly temperature forecasts from an ensemble of 22 
input forecasts including both NWP output and derived 
MOS products. The dataset spanned the period 14 Novem-
ber 2014 through 11 October 2015, with a few missing 
days. Surface temperature measurements from over 1200 
ground weather station (“METAR”) locations in the conti-
nental U.S were used as truth observations.  

 To evaluate performance, forecasts for 0-72 hour lead 
times generated at 0900 UTC each day for the METAR 
sites were compared with the observed surface tempera-
tures. Results for several methods and for several choices 
of the AR method’s adaptable parameters were computed 
and compared. These included the single best-performing 
input forecast (BF); the best input forecast with bias cor-
rection (BFB); the equal weights consensus (EW), which 
computes the simple mean of the bias-corrected input fore-
casts; the inverse variance weights method (VAR) men-
tioned earlier; the DICast stochastic gradient descent 
method (SGD); and adaptable regression (AR). For AR, 
five sets of parameters are shown, denoted AR000, AR100, 
AR010, AR001 and AR111, where the first digit represents 
whether or not bias modulation was used, the second 
whether or not regularization was used and the third 
whether or not covariance aggregation was used. For these 
AR results, the bias modulation � = 1 or 0.8, regularization 
parameter � = 0 or 0.1, and error covariance aggregation 
proportion ��  = 0 or 0.7; the bias aggregation proportion �� 
= 0.0 is fixed for all four. All 10 methods were allowed to 
“spin up” from 14 November 2014 – 31 January 2015, and 
then evaluated for 1 February – 11 October 2015. The AR 
results use a lookback period of up to 91 days (3 months), 
whereas the other methods are allowed to use all previous 
data. Cross-validation was not appropriate for this evalua-
tion, since forecast consensus weights and biases were de-
termined at each timestep from past data, then used to 
make a forecast 0-72 hours into the future which was sub-
sequently verified. However, all experiments for determin-
ing good parameters were performed using a small number 
of odd-hour forecast lead times, whereas only performance 
comparison results for even forecast lead times are shown. 

 Results of the evaluation are summarized in Table 1 us-
ing the performance of the equally-weighted average of 
bias-corrected input forecasts, EW, as a reference. Alt-
hough EW is a simple technique, the 22 input forecasts 
were selected based on their skill, so it is a valid bench-
mark. The first column contains the overall RMSE com-
puted over all days, sites and lead-times; the other columns 
show the median and 90th percentile, respectively, of 
RMSEs computed over all days for each site and lead-time. 
The input forecast used for the best forecast (BF) evalua-
tion was the one with the smallest RMSE over the entire 

dataset. Bias-correcting it using a dynamic bias calculation 
similar to eq. (3), with � � ���� and � � �, reduced 
RMSE substantially—more than 10%, as shown by the 
BFB row in the table. Averaging all of the bias-corrected 
input forecasts provided another large performance jump 
of about 10%, as shown by the EW RMSEs. These results 
clearly confirm the value of both dynamic bias correction 
and averaging the input forecasts, both of which have been 
well-established in the weather forecasting literature. 

 The inverse variance weighting (VAR) method reduces 
RMSE by over 1% from the EW results, and the DICast 
stochastic gradient descent algorithm (SGD) improves on 
EW by nearly 3%. Without bias modulation, regularization 
or covariance aggregation, the AR method reduces RMSE 
by a further 0.5% or more, as shown by the AR000 row. In 
this and all other AR runs shown in this paper, the bias and 
error covariance learning rates were fixed at � � ���� and 
� � ����; the goal weight ��

� �; and the weight limits 
were ��

� � and ��
� �. Incorporating bias modulation, 

regularization, covariance aggregation, or all three together 
results in successive improvements, with AR111 represent-
ing an improvement of nearly 6% over the EW benchmark. 
While this improvement is less impressive than the large 
gains achieved by dynamic bias correction and simple en-
semble forecast averaging, the improvement of AR111 
over SGD—the current state-of-the-art—is more than the 
improvement of SGD over EW. Since performance gains 
are increasingly hard-won as forecast accuracy improves, 
we consider this a successful outcome. AR001 (baseline 
plus covariance aggregation) achieves roughly 80% of this 
improvement, whereas bias modulation and regularization 
have smaller but still significant effects. 

 
 

Table 1: Performance comparison results represented as 
percentages relative to EW performance, as described in the text. 

 Rel. Tot. 
RMSE (%) 

Rel. Median 
RMSE (%) 

Rel. 90 pctile 
RMSE (%) 

BF 128.6 125.2 127.9 
BFB 110.8 111.3 109.4 
EW 100.0 100.0 100.0 

VAR 98.7 98.8 98.8 
SGD 97.3 97.3 97.8 

AR000 96.7 96.8 97.1 
AR100 96.4 96.6 96.7 
AR010 96.1 96.2 96.5 
AR001 94.7 94.7 95.2 
AR111 94.3 94.3 94.8 
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To further illustrate the contributions of the adaptable 
bias modulation, regularization, and covariance aggrega-
tion parameters, Figure 1 shows how the RMSE changes as 
�, �, and ��  are varied in turn from the AR000 configura-
tion of � � �, � � �, and �� � �  (dotted lines), or from 
the AR111 selection of � � ���, � � ���, and �� � ���  
(solid lines). These results were computed from only four 
representative lead times—11, 27, 39 and 55 hours—to 
limit computation time. Decreasing � from 1.0 to 0.8 re-
duced RMSE by about 0.04% in both AR000 and AR111 
scenarios. Beginning with the AR000 configuration, in-
creasing the regularization factor � reduced the RMSE by 
about 1% for values between 0.3 and 1.0; in AR111, how-
ever, regularization reduced RMSE by only 0.1% at 
� � ���, and increased it for � � ���. Thus, regularization 
appears less valuable, and is optimal at a smaller parameter 
value, when covariance aggregation is used. The propor-
tion of aggregated covariances, �� , had the largest effect on 
performance; for values between 0.7 and 0.9, it reduced 
RMSE by about 2% from AR000, and in the AR111 sce-
nario was responsible for a decrease of about 1.5%.  

 

 

Figure 1: AR performance sensitivity results for bias  
modulation (top), regularization (middle) and covariance  
aggregation (bottom) parameters, as described in the text. 

 
 Finally, we consider how the AR improvements in con-

sensus forecast accuracy vary spatially and temporally. 
Figure 2 shows a spatial comparison of the RMSE of 
AR111 relative to EW, where the RMSE is computed for 

each site over all days and even hour forecast lead times 
from 0-72 hours. The AR111 consensus performs better at 
every site, as indicated by the fact that no values exceed 
100%. The typical improvement of AR111 over EW is 
around 6%. However, much greater gains were made at 
many sites along the west coast and several in the inter-
mountain west. We hypothesize that many of these sites 
are in or near highly variable terrain, and that the input 
forecasts in the ensemble are both less skillful and more 
variable there, making a careful choice of weights more 
beneficial. A similar analysis of monthly RMSE shows that 
AR111 scored better than EW in every month: over 7% 
better in February-March, about 5.5% better in April and 
May, and nearly 4% better in June – September. Thus, 
AR111 shows the largest relative improvement over EW in 
the winter months, which have the greatest temperature 
forecast errors, and less in the less volatile summer months 
when both AR111 and EW RMSEs were about 30% lower 
than their winter highs. 
 
 

 

Figure 2: AR111 RMSE as a percentage of EW RMSE for each 
site, with values represented via the colorscale shown at right.  

Conclusion 
This paper has motivated and described an adaptable re-
gression technique for consensus prediction, couching it in 
the context of ensemble-based deterministic weather fore-
casting. The method requires a history of past observations 
and input forecast values. An exponential decay factor is 
used to discount the influence of older performance data in 
both bias and error covariance computations, and input 
forecast error covariance matrices and biases from neigh-
boring sites and times may be aggregated to reduce the 
effect of random “noise” in the input forecasts and obser-
vations. At each forecast generation time, biases and error 
covariance matrices are assembled for the available input 
forecasts. Weight bounds and a preferred weight solution, 
or goal, may be specified. The input forecast error covari-
ance matrix diagonal is inflated to provide regularized re-
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gression (“ridge regression”) that mitigates overfitting by 
driving the solution toward the specified goal weights. 
Similarly, the computed biases are “modulated” by a mul-
tiplicative factor between 0 and 1 to accommodate a prior 
belief that the bias estimates should tend toward 0. Using 
these ingredients, the AR method produces a quadratic 
program for each site whose solution is the set of combina-
tion weights to be used in producing the final consensus 
forecast via a weighted average of the bias-corrected input 
forecasts. Between forecast generation cycles, the adapta-
ble algorithm parameters may be adjusted based on the 
most recent performance data, allowing the system to adapt 
to seasonal, synoptic, or NWP model changes.  

 The AR method was illustrated using 0-72 hour, multi-
season consensus temperature forecasting for over 1200 
METAR sites in the continental U.S. based on a 22-
member forecast ensemble. AR showed much better per-
formance than the best individual input forecast, a simple 
average of the bias-corrected input forecasts, or inverse 
variance weighting, and it showed more modest but still 
significant improvement over the legacy DICast method. 
Additionally, sensitivity tests showed that bias modulation, 
regularization and covariance aggregation improved 
RMSE, but an investigation of different parameter sets 
showed that their effects were not additive. The biggest 
improvement appeared to be produced by error covariance 
aggregation, while regularization demonstrated significant 
improvement when aggregation wasn’t used and bias mod-
ulation had a smaller but consistent effect. Further im-
provements may result from dynamically selecting AR 
parameter values by testing alternatives empirically be-
tween forecast cycles, or via methods along the lines of the 
L-curve criterion for ridge regression (Hansen 1992, Cal-
vetti et al. 2004). However, our initial exploration of these 
ideas has not identified a performance benefit that merits 
the additional computational cost. 

 Given the widespread use and importance of consensus 
prediction, even a marginal improvement in accuracy can 
have significant benefit for a number of domains. For in-
stance, accurately forecasting weather can help communi-
ties better prepare for and mitigate the damaging effects of 
severe weather on lives and property, and consensus fore-
casts of climate impacts are important for informed long-
term planning. Short and mid-term forecasts of tempera-
ture, wind and solar radiation are becoming increasingly 
important to utilities managing portfolios of wind and solar 
farms in addition to traditional power plants, balancing 
production with consumer power demand (which is also 
highly influenced by weather). Numerous other endeavors, 
from transportation to retail logistics, will also benefit from 
more accurate predictions. 
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