AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
ConTaCT: Deciding to Communicate during Time-Critical Collaborative Tasks in Unknown, Deterministic Domains
Vaibhav V. Unhelkar, Julie A. Shah

Last modified: 2016-03-03


Communication between agents has the potential to improve team performance of collaborative tasks. However, communication is not free in most domains, requiring agents to reason about the costs and benefits of sharing information. In this work, we develop an online, decentralized communication policy, ConTaCT, that enables agents to decide whether or not to communicate during time-critical collaborative tasks in unknown, deterministic environments. Our approach is motivated by real-world applications, including the coordination of disaster response and search and rescue teams. These settings motivate a model structure that explicitly represents the world model as initially unknown but deterministic in nature, and that de-emphasizes uncertainty about action outcomes. Simulated experiments are conducted in which ConTaCT is compared to other multi-agent communication policies, and results indicate that ConTaCT achieves comparable task performance while substantially reducing communication overhead.


Communication in multi-agent systems; Decentralized execution; Planning under uncertainty; Cooperation and collaboration

Full Text: PDF