AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
Energy- and Cost-Efficient Pumping Station Control
Timon V. Kanters, Frans A. Oliehoek, Michael Kaisers, Stan R. van den Bosch, Joep Grispen, Jeroen Hermans

Last modified: 2016-11-02


With renewable energy becoming more common, energy prices fluctuate more depending on environmental factors such as the weather. Consuming energy without taking volatile prices into consideration can not only become expensive, but may also increase the peak load, which requires energy providers to generate additional energy using less environment-friendly methods. In the Netherlands, pumping stations that maintain the water levels of polder canals are large energy consumers, but the controller software currently used in the industry does not take real-time energy availability into account. We investigate if existing AI planning techniques have the potential to improve upon the current solutions. In particular, we propose a light weight but realistic simulator and investigate if an online planning method (UCT) can utilise this simulator to improve the cost-efficiency of pumping station control policies. An empirical comparison with the current control algorithms indicates that substantial cost, and thus peak load, reduction can be attained.


energy-efficient; cost-efficient; planning; mcts; monte-carlo tree search; uct; pumping stations; water system; weather; uncertainty; energy prices; real-world application; sequential decision problem; pumping station control

Full Text: PDF