AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
Multiple Kernel k-Means Clustering with Matrix-Induced Regularization
Xinwang Liu, Yong Dou, Jianping Yin, Lei Wang, En Zhu

Last modified: 2016-02-21


Multiple kernel k-means (MKKM) clustering aims to optimally combine a group of pre-specified kernels to improve clustering performance. However, we observe that existing MKKM algorithms do not sufficiently consider the correlation among these kernels. This could result in selecting mutually redundant kernels and affect the diversity of information sources utilized for clustering, which finally hurts the clustering performance. To address this issue, this paper proposes an MKKM clustering with a novel, effective matrix-induced regularization to reduce such redundancy and enhance the diversity of the selected kernels. We theoretically justify this matrix-induced regularization by revealing its connection with the commonly used kernel alignment criterion. Furthermore, this justification shows that maximizing the kernel alignment for clustering can be viewed as a special case of our approach and indicates the extendability of the proposed matrix-induced regularization for designing better clustering algorithms. As experimentally demonstrated on five challenging MKL benchmark data sets, our algorithm significantly improves existing MKKM and consistently outperforms the state-of-the-art ones in the literature, verifying the effectiveness and advantages of incorporating the proposed matrix-induced regularization.


Multiple kernel learning; Clustering; Matrix-induced regularization

Full Text: PDF