AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
A Representation Learning Framework for Multi-Source Transfer Parsing
Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, Ting Liu

Last modified: 2016-03-05


Cross-lingual model transfer has been a promising approach for inducing dependency parsers for low-resource languages where annotated treebanks are not available. The major obstacles for the model transfer approach are two-fold: 1. Lexical features are not directly transferable across languages; 2. Target language-specific syntactic structures are difficult to be recovered. To address these two challenges, we present a novel representation learning framework for multi-source transfer parsing. Our framework allows multi-source transfer parsing using full lexical features straightforwardly. By evaluating on the Google universal dependency treebanks (v2.0), our best models yield an absolute improvement of 6.53% in averaged labeled attachment score, as compared with delexicalized multi-source transfer models. We also significantly outperform the state-of-the-art transfer system proposed most recently.


Natural Language Processing; Representation Learning; Multilingual Learning; Dependency Parsing

Full Text: PDF