V for Verification: Intelligent Algorithm of Checking Reliability of Smart Systems

Anna Lukina
Cyber-Physical Systems Group
Technische Universität Wien
Treithstrasse 3/3, Vienna, Austria
anna.lukina@tuwien.ac.at

Introduction
Cyber-physical systems (CPS) are intended to receive information from the environment through sensors and perform appropriate actions using actuators of the controller.

In the last years world of intelligent technologies has grown in an exponential fashion: from cruise control to smart ecosystems. Next we are facing the future of CPS involved in almost every aspect of our lives bringing higher comfortability and efficiency. Our goal is to help smart inventions adjust to this highly uncertain environment and guarantee safety for its inhabitants.

The physical environment renders the problem of CPS verification extremely cumbersome. Due to a wealth of uncertainties introduced by physical processes, the system is best described by stochastic models. Approximate prediction techniques, such as Statistical Model Checking (SMC), have therefore recently become increasingly popular (Grosu et al. 2014) moves in 2-dimensional space locally governed by the same control law. Any agent in the flock can detect the positions and velocities of all other agents through sensors, and given this information, the agent’s controller calculates an optimal acceleration for it: \(\pi_i(t), \pi_v(t) \) and \(\pi_a(t) \) are the vectors of 2-dimensional positions, velocities, and accelerations, respectively, of bird \(i \) at time \(t \), \(1 \leq i \leq N \), for a fixed number of birds \(N \). The following equations model the behavior of bird \(i \) in discrete time with \(\pi_i(t) \) as controlled variables \(\forall i \in \{1, \ldots, N\} \): \(\pi_i(t+1) = \pi_i(t) + \pi_v(t+1), \pi_v(t+1) = \pi_a(t) + \pi_v(t) \).

Ultimately, we would like to synthesize an algorithm providing analytical guarantees of agents getting into a V-formation starting from a random configuration using a flying drones simulation model and statistical model checking. Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995) is a promising approach to address this problem. It uniformly distributes the particles in space and adjusts their velocities to lead the swarm to satisfying a given property while using a random factor in the adjustment rule in order to explore the space.

On the one hand, a V-formation provides the birds with a clear view of the front field and visibility of their lateral neighbors. On the other hand, the latter is of great importance to flocking birds for saving energy from the free lift as a beneficial effect of the upwash region generated off the trailing edge of wings of the birds in front of them (Weimerskirch et al. 2001). We believe this approach can lead to a breakthrough discovery in developing energy-efficient and reliable autonomous technologies.

Achievements and Planned Research
First and foremost, we strive to obtain a better understanding of the challenges we face when dealing with currently...
existing CPS. By doing so, we will be able to predict their behavior in extreme cases and give guidance to the future generation of smart technologies.

In 2015-2016 together with R. Grosu, E. Bartocci, S. A. Smolka, K. Kalajdzic, and C. Jégourel we developed a novel framework of feedback control for SMC of CPS. The approach tackles an increasingly important problem of RE by combining two advanced sequential Monte-Carlo methods: Importance Sampling (ISam) (Kahn 1955) and Importance Splitting (ISpl), originally developed for statistical physics (Kahn and Harris 1951). These techniques have been recently adopted by the robotics (Russell and Norvig 2010) and SMC communities (Jégourel, Legay, and Sedwards 2012; 2013).

In the proposed framework, ISam estimates the current state of the CPS and the current level, and ISpl controls the execution of the CPS based on this information. Both techniques depend on the model identified during a preliminary, learning stage. The algorithm may be applied to the approximate analysis of any complex probabilistic program whose monitoring is feasible through appropriate instrumentation, but whose model derivation is infeasible through static analysis techniques (due to e.g. sheer size or complicated transitions). This collaborative work successfully resulted in publication (Kalajdzic et al. 2016).

Current and Anticipated Progress

Recently, I have worked on testing existing centralized Model Predictive Control (MPC) (Garcia, Prett, and Morari 1989) to bird flocking optimization problem proposed in (Yang et al. 2016). After adjusting original algorithm for parallel execution I conducted 10,000 experiments on a 16-core machine. Analyzing accumulated statistical data I estimated the performance of the algorithm as being too low to be considered reliable. As a result, I have focused on possible directions for improvement:

- Tunning parameters or discovering substitutes for PSO.
- Modifying MPC routine.

My thorough investigation resulted in developing a novel adaptive receding-horizon synthesis algorithm for optimal plans bringing an arbitrary dynamic process to a stable state. Experimental results proved reliability improvement by at least 40% and ten-fold average execution time decrease. I consider control of a dynamic system as a memoryless decision process. The algorithm performs adaptive splitting into monotonically decreasing levels of optimization by taking advantage of intelligent space exploration with numerous runs of PSO and selective importance-based resampling. When stabilized and tested this algorithm has a great potential to be applied for a wider range of optimization problems.

In October 2016 I submitted a paper introducing my algorithm to the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’17). I now consider its application to drones. By February 2017 I expect to prepare a paper for submission to the 56th IEEE Conference on Decision and Control (CDC’17).

References

