LP^MLN Weak Constraints, and P-log

Joohyung Lee and Zhun Yang
School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, USA
{joolee, zyang90}@asu.edu

Abstract

LP^MLN is a recently introduced formalism that extends answer set programs by adopting the log-linear weight scheme of Markov Logic. This paper investigates the relationships between LP^MLN and two other extensions of answer set programs: weak constraints to express a quantitative preference among answer sets, and P-log to incorporate probabilistic uncertainty. We present a translation of LP^MLN into programs with weak constraints and a translation of P-log into LP^MLN, which complement the existing translations in the opposite directions. The first translation allows us to compute the most probable stable models (i.e., MAP estimates) of LP^MLN programs using standard ASP solvers. This result can be extended to other formalisms, such as Markov Logic, ProbLog, and Pearl’s Causal Models, that are shown to be translatable into LP^MLN. The second translation tells us how probabilistic nonmonotonicity (the ability of the reasoner to change his probabilistic model as a result of new information) of P-log can be represented in LP^MLN, which yields a way to compute P-log using standard ASP solvers and MLN solvers.

Introduction

LP^MLN (Lee and Wang 2016) is a recently introduced probabilistic logic programming language that extends answer set programs (Gelfond and Lifschitz 1988) with the concept of weighted rules, whose weight scheme is adopted from that of Markov Logic (Richardson and Domingos 2006). It is shown in (Lee and Wang 2016; Lee, Meng, and Wang 2015) that LP^MLN is expressive enough to embed Markov Logic and several other probabilistic logic languages, such as ProbLog (De Raedt, Kimmig, and Toivonen 2007), Pearls’ Causal Models (Pearl 2000), and a fragment of P-log (Baral, Gelfond, and Rushton 2009).

Among several extensions of answer set programs to overcome the deterministic nature of the stable model semantics, LP^MLN is one of the few languages that incorporate the concept of weights into the semantics. Another one is weak constraints (Buccafurri, Leone, and Rullo 2000), which are to assign a quantitative preference over the stable models of non-weak constraint rules: weak constraints cannot be used for deriving stable models. It is relatively a simple extension of the stable model semantics but has turned out to be useful in many practical applications. Weak constraints are part of the ASP Core 2 language (Calimeri et al. 2013), and are implemented in standard ASP solvers, such as CLINGO and DLV.

P-log is a probabilistic extension of answer set programs. In contrast to weak constraints, it is highly structured and has quite a sophisticated semantics. One of its distinct features is probabilistic nonmonotonicity (the ability of the reasoner to change his probabilistic model as a result of new information) whereas, in most other probabilistic logic languages, new information can only cause the reasoner to abandon some of his possible worlds, making the effect of an update monotonic.

This paper reveals interesting relationships between LP^MLN and these two extensions of answer set programs. It shows how different weight schemes of LP^MLN and weak constraints are related, and how the probabilistic reasoning in P-log can be expressed in LP^MLN. The result helps us understand these languages better as well as other related languages, and also provides new, effective computational methods based on the translations.

It is shown in (Lee and Wang 2016) that programs with weak constraints can be easily viewed as a special case of LP^MLN programs. In the first part of this paper, we show that an inverse translation is also possible under certain conditions, i.e., an LP^MLN program can be turned into a usual ASP program with weak constraints so that the most probable stable models of the LP^MLN program are exactly the optimal stable models of the program with weak constraints. The result allows for using ASP solvers for computing Maximum A Posteriori probability (MAP) estimates of LP^MLN programs. Interestingly, the translation is quite simple so it can be easily applied in practice. Further, the result implies that MAP inference in other probabilistic logic languages, such as Markov Logic, ProbLog, and Pearl’s Causal Models, can be computed by standard ASP solvers because they are known to be embeddable in LP^MLN, thereby allowing us to apply combinatorial optimization in standard ASP solvers to MAP inference in these languages.

In the second part of the paper, we show how P-log can be completely characterized in LP^MLN. Unlike the translation in (Lee and Wang 2016), which was limited to a subset of
P-log that does not allow dynamic default probability, our translation applies to full P-log and complements the recent translation from LP\(^{MLN}\) into P-log in (Balai and Gelfond 2016). In conjunction with the embedding of LP\(^{MLN}\) in answer set programs with weak constraints, our work shows how MAP estimates of P-log can be computed by standard ASP solvers, which provides a highly efficient way to compute P-log.

Preliminaries

Review: LP\(^{MLN}\)

We review the definition of LP\(^{MLN}\) from (Lee and Wang 2016). In fact, we consider a more general syntax of programs than the one from (Lee and Wang 2016), but this is not an essential extension. We follow the view of (Ferraris, Lee, and Lifschitz 2011) by identifying logic program rules as a special case of first-order formulas under the stable model semantics. For example, rule \(r(x) \leftarrow p(x), \neg q(x) \) is identified with formula \(\forall x (p(x) \land \neg q(x) \rightarrow r(x)) \). An LP\(^{MLN}\) program is a finite set of weighted first-order formulas \(w : F \) where \(w \) is a real number (in which case the weighted formula is called soft or \(\alpha \) for denoting the infinite weight (in which case it is called hard)). An LP\(^{MLN}\) program is called ground if its formulas contain no variables. We assume a finite Herbrand Universe. Any LP\(^{MLN}\) program can be turned into a ground program by replacing the quantifiers with multiple conjunctions and disjunctions over the Herbrand Universe. Each of the ground instances of a formula with free variables receives the same weight as the original formula.

For any ground LF\(^{MLN}\) program \(\Pi \) and any interpretation \(I \), \(\Pi[I] \) denotes the set of unweighted formula obtained from \(\Pi \), and \(SM[\Pi] \) denotes the set \(\{ I \mid I \text{ is a stable model of } \Pi[I] \} \) (We refer the reader to the stable model semantics of first-order formulas in (Ferraris, Lee, and Lifschitz 2011)). The unnormalized weight of an interpretation \(I \) under \(\Pi \) is defined as

\[
W_\Pi(I) = \begin{cases}
\exp \left(\sum_{w : F \in \Pi[I]} w \right) & \text{if } I \in SM[\Pi]; \\
0 & \text{otherwise.}
\end{cases}
\]

The normalized weight (a.k.a. probability) of an interpretation \(I \) under \(\Pi \) is defined as

\[
P_\Pi(I) = \lim_{\alpha \to \infty} \frac{W_\Pi(I)}{\sum_{J \in SM[\Pi]} W_\Pi(J)}. \]

\(I \) is called a (probabilistic) stable model of \(\Pi \) if \(P_\Pi(I) \neq 0 \).

Review: Weak Constraints

A weak constraint has the form

\[\vdash F \ [\text{Weight @ Level}] \]

where \(F \) is a ground formula, Weight is a real number and Level is a nonnegative integer. Note that the syntax is more general than the one from the literature (Buccafurri, Leone, and Rullo 2000; Calimeri et al. 2013), where \(F \) was restricted to conjunctions of literals.\(^1\) We will see the generalization is more convenient for stating our result, but will also present translations that conform to the restrictions imposed on the input language of ASP solvers.

Let \(\Pi \) be a program \(\Pi_1 \cup \Pi_2 \), where \(\Pi_1 \) is a set of ground formulas and \(\Pi_2 \) is a set of weak constraints. We call \(I \) a stable model of \(\Pi \) if it is a stable model of \(\Pi_1 \) (in the sense of (Ferraris, Lee, and Lifschitz 2011)). For every stable model \(I \) of \(\Pi \) and any nonnegative integer \(l \), the penalty of \(I \) at level \(l \), denoted by \(\text{Penalty}_\Pi(I, l) \), is defined as

\[
\sum_{l = 0}^{\infty} w:\ F_\Pi[I, l] \subseteq F.
\]

For any two stable models \(I \) and \(I' \) of \(\Pi \), we say \(I \) is dominated by \(I' \) if

- there is some nonnegative integer \(l \) such that \(\text{Penalty}_\Pi(I', l) < \text{Penalty}_\Pi(I, l) \) and
- for all integers \(k > l \), \(\text{Penalty}_\Pi(I', k) = \text{Penalty}_\Pi(I, k) \).

A stable model of \(\Pi \) is called optimal if it is not dominated by another stable model of \(\Pi \).

Turning LP\(^{MLN}\) into Programs with Weak Constraints

General Translation

We define a translation that turns an LP\(^{MLN}\) program into a program with weak constraints. For any ground LP\(^{MLN}\) program \(\Pi \), the translation \(\text{lpmln2wc}(\Pi) \) is simply defined as follows. We turn each weighted formula \(w : F \) in \(\Pi \) into \(\{ F \}^w \), where \(\{ F \}^w \) is a choice formula, standing for \(F \lor \neg F \) (Ferraris, Lee, and Lifschitz 2011). Further, we add

\[
\vdash F \ [\sim 1@0] \quad (1)
\]

if \(w = \alpha \), and

\[
\vdash F \ [\sim w@0] \quad (2)
\]

otherwise.

Intuitively, choice formula \(\{ F \}^w \) allows \(F \) to be either included or not in deriving a stable model.\(^2\) When \(F \) is included, the stable model gets the (negative) penalty \(-1\) at level 1 or \(-w\) at level 0 depending on the weight of the formula, which corresponds to the (positive) “reward” \(e^\alpha \) or \(e^w \) that it receives under the LP\(^{MLN}\) semantics.

The following proposition tells us that choice formulas can be used for generating the members of SM[\(\Pi \)].

Proposition 1 For any LP\(^{MLN}\) program \(\Pi \), the set SM[\(\Pi \)] is exactly the set of the stable models of \(\text{lpmln2wc}(\Pi) \).

The following theorem follows from Proposition 1. As the probability of a stable model of an LP\(^{MLN}\) program \(\Pi \) increases, the penalty of the corresponding stable model of \(\text{lpmln2wc}(\Pi) \) decreases, and the distinction between hard rules and soft rules can be simulated by the different levels of weak constraints, and vice versa.

\(^1\)A literal is either an atom \(p \) or its negation \(\neg p \).

\(^2\)This view of choice formulas was used in PrASP (Nickles and Mileo 2014) in defining spanning programs.
Theorem 1 For any LP^{MLN} program Π, the most probable stable models (i.e., the stable models with the highest probability) of Π are precisely the optimal stable models of the program with weak constraints lpmln2wc(Π).

Example 1 For program Π:

\begin{align*}
10 : & \quad p \rightarrow q \\
1 : & \quad p \rightarrow r \\
-20 : & \quad \neg r \rightarrow \bot
\end{align*}

SM[Π] has 5 elements: \(\emptyset, \{p\}, \{p, q\}, \{p, r\}, \{p, q, r\}\). Among them, \(\{p, q\}\) is the most probable stable model, whose weight is \(e^{15}\), while \(\{p, q, r\}\) is a probabilistic stable model whose weight is \(e^{-4}\). The translation yields

\[
\begin{align*}
\{p \rightarrow q\}^\text{ch} & \quad \sim p \rightarrow q \quad [-10 @ 0] \\
\{p \rightarrow r\}^\text{ch} & \quad \sim p \rightarrow r \quad [-1 @ 0] \\
\{p\}^\text{ch} & \quad \sim p \quad [-5 @ 0] \\
\{\neg r \rightarrow \bot\}^\text{ch} & \quad \sim \neg r \rightarrow \bot \quad [20 @ 0]
\end{align*}
\]

whose optimal stable model is \(\{p, q\}\) with the penalty at level 0 being −15, while \(\{p, q, r\}\) is a stable model whose penalty at level 0 is 4.

The following example illustrates how the translation accounts for the difference between hard rules and soft rules by assigning different levels.

Example 2 Consider the LP^{MLN} program Π in Example 1 from (Lee and Wang 2016).

\[
\begin{align*}
\alpha : & \quad \text{Bird}(Jo) \leftarrow \text{ResidentBird}(Jo) \quad (1) \\
\alpha : & \quad \text{Bird}(Jo) \leftarrow \text{MigratoryBird}(Jo) \quad (2) \\
\alpha : & \quad \bot \leftarrow \text{ResidentBird}(Jo), \text{MigratoryBird}(Jo) \quad (3) \\
2 : & \quad \text{ResidentBird}(Jo) \quad (4) \\
1 : & \quad \text{MigratoryBird}(Jo) \quad (5)
\end{align*}
\]

The translation lpmln2wc(Π) is

\[
\begin{align*}
\{\text{Bird}(Jo) \leftarrow \text{ResidentBird}(Jo)\}^\text{ch} & \quad \sim \text{Bird}(Jo) \leftarrow \text{ResidentBird}(Jo) \quad [-10 @ 1] \\
\{\text{Bird}(Jo) \leftarrow \text{MigratoryBird}(Jo)\}^\text{ch} & \quad \sim \text{Bird}(Jo) \leftarrow \text{MigratoryBird}(Jo) \quad [-10 @ 1] \\
\{\bot \leftarrow \text{ResidentBird}(Jo), \text{MigratoryBird}(Jo)\}^\text{ch} & \quad \sim \bot \leftarrow \text{ResidentBird}(Jo), \text{MigratoryBird}(Jo) \quad [-10 @ 1] \\
\{\text{ResidentBird}(Jo)\}^\text{ch} & \quad \sim \text{ResidentBird}(Jo) \quad [-2 @ 0] \\
\{\text{MigratoryBird}(Jo)\}^\text{ch} & \quad \sim \text{MigratoryBird}(Jo) \quad [-1 @ 0]
\end{align*}
\]

The three probabilistic stable models of Π, \(\emptyset, \{\text{Bird}(Jo), \text{ResidentBird}(Jo)\}, \text{and} \{\text{Bird}(Jo), \text{MigratoryBird}(Jo)\}\), have the same penalty −3 at level 1. Among them, \(\{\text{Bird}(Jo), \text{ResidentBird}(Jo)\}\) has the least penalty at level 0, and thus is an optimal stable model of lpmln2wc(Π).

In some applications, one may not want any hard rules to be violated assuming that hard rules encode definite knowledge. For that, lpmln2wc(Π) can be modified by simply turning hard rules into the usual ASP rules. Then the stable models of lpmln2wc(Π) satisfy all hard rules. For example, the program in Example 2 can be translated into programs with weak constraints as follows.

\[
\begin{align*}
\text{Bird}(Jo) & \leftarrow \text{ResidentBird}(Jo) \\
\text{Bird}(Jo) & \leftarrow \text{MigratoryBird}(Jo) \\
\bot & \leftarrow \text{ResidentBird}(Jo), \text{MigratoryBird}(Jo) \\
\{\text{ResidentBird}(Jo)\}^\text{ch} & \quad \sim \text{ResidentBird}(Jo) \quad [1 @ 1] \\
\{\text{MigratoryBird}(Jo)\}^\text{ch} & \quad \sim \text{MigratoryBird}(Jo) \quad [1 @ 0]
\end{align*}
\]

Also note that while the most probable stable models of Π and the optimal stable models of lpmln2wc(Π) coincide, their weights and penalties are not proportional to each other. The former is defined by an exponential function whose exponent is the sum of the weights of the satisfied formulas, while the latter simply adds up the penalties of the satisfied formulas. On the other hand, they are monotonically increasing/decreasing as more formulas are satisfied.

In view of Theorem 2 from (Lee and Wang 2016), which tells us how to embed Markov Logic into LP^{MLN}, it follows from Theorem 1 that MAP inference in MLN can also be reduced to the optimal stable model finding of programs with weak constraints. For any Markov Logic Network Π, let mln2wc(Π) be the union of lpmln2wc(Π) plus choice rules \(\{A\}^\text{ch}\) for all atoms \(A\).

Theorem 2 For any Markov Logic Network Π, the most probable models of Π are precisely the optimal stable models of the program with weak constraints mln2wc(Π).

Similarly, MAP inference in ProbLog and Pearl’s Causal Models can be reduced to finding an optimal stable model of a program with weak constraints in view of the reduction of ProbLog to LP^{MLN} (Theorem 4 from (Lee and Wang 2016)) and the reduction of Causal Models to LP^{MLN} (Theorem 4 from (Lee, Meng, and Wang 2015)) thereby allowing us to apply combinatorial optimization methods in standard ASP solvers to these languages.

Alternative Translations

Instead of aggregating the weights of satisfied formulas, we may aggregate the weights of formulas that are not satisfied. Let lpmln2wc^{psl}(Π) be a modification of lpmln2wc(Π) by replacing (1) with

\[
\sim \neg F \quad [1 @ 1]
\]

and (2) with

\[
\sim \neg F \quad [w @ 0].
\]

Intuitively, when \(F\) is not satisfied, the stable model gets the penalty 1 at level 1, or \(w\) at level 0 depending on whether \(F\) is a hard or soft formula.

Corollary 1 Theorem 1 remains true when lpmln2wc(Π) is replaced by lpmln2wc^{psl}(Π).

This alternative view of assigning weights to stable models, in fact, originates from Probabilistic Soft Logic (PSL) (Bach et al. 2015), where the probability density function of an interpretation is obtained from the sum over the “penalty” from the formulas that are “distant” from satisfaction. This
view will lead to a slight advantage when we further turn the translation into the input language of ASP solvers (See Footnote 6).

The current ASP solvers do not allow arbitrary formulas to appear in weak constraints. For computation using the ASP solvers, let lpmln2wecnt,rule(Π) be the translation by turning each weighted formula \(w_i : F_i \) in \(\Pi \) into

\[
-\forall F_i \rightarrow \text{unsat}(i) \\
\neg \text{unsat}(i) \rightarrow F_i \\
\vdash \text{unsat}(i) [w_i @ l]
\]

where \(\text{unsat}(i) \) is a new atom, and \(l = 1 \) if \(w_i \) is \(a \) and \(l = 0 \) otherwise.

Corollary 2 Let \(\Pi \) be an LP\(^{MLN} \) program. There is a 1-1 correspondence \(\phi \) between the most probable stable models of \(\Pi \) and the optimal stable models of \(\text{lpmln2wecnt,rule}(\Pi) \), where \(\phi(I) = I \cup \{ \text{unsat}(i) \mid w_i : F_i \in \Pi, I \not\models F_i \} \).

The corollary allows us to compute the most probable stable models (MAP estimates) of the LP\(^{MLN} \) program using the combination of F2LP \(^{4} \) and CLINGO \(^{5} \) (assuming that the weights are approximated to integers). System F2LP turns this program with formulas into the input language of CLINGO, so CLINGO can be used to compute the theory.

If the unweighted LP\(^{MLN} \) program is already in the rule form \(\text{Head} \leftarrow \text{Body} \) that is allowed in the input languages of CLINGO and DLV, we may avoid the use of F2LP by slightly modifying the translation \(\text{lpmln2wecnt,rule} \) by turning each weighted rule

\[
w_i : \text{Head}_i \leftarrow \text{Body}_i
\]

instead into

\[
\text{unsat}(i) \leftarrow \text{Body}_i, \neg \text{Head}_i, \text{Head}_i \leftarrow \text{Body}_i, \neg \text{unsat}(i) \vdash \text{unsat}(i) [w_i @ l]
\]

where \(l = 1 \) if \(w_i \) is \(a \) and \(l = 0 \) otherwise.

In the case when \(\text{Head}_i \) is \(\bot \), the translation can be further simplified: we simply turn \(w_i : \bot \leftarrow \text{Body}_i \) into

\[
\vdash \text{Body}_i [w_i @ l].^{6}
\]

Example 1 continued: For program (3), the simplified translation \(\text{lpmln2wecnt,rule} \) yields

\[
\begin{align*}
\text{unsat}(1) & \leftarrow p, \neg q, q \leftarrow p, \neg \text{unsat}(1) & \vdash \text{unsat}(1) & [1000] \\
\text{unsat}(2) & \leftarrow p, \neg r, r \leftarrow p, \neg \text{unsat}(2) & \vdash \text{unsat}(2) & [1000] \\
\text{unsat}(3) & \leftarrow p, \neg \text{unsat}(3) & \vdash \text{unsat}(3) & [5000] \\
\& \neg r & \leftarrow \text{unsat}(3) & \vdash \neg r & [-2000]
\end{align*}
\]

Turning P-log into LP\(^{MLN} \)

Review: P-log

Syntax A sort is a set of symbols. A constant \(c \) maps an element in the domain \(s_1 \times \cdots \times s_n \) to an element in the

\(^{4}\)http://reasoning.eas.asu.edu/f2lp/
\(^{5}\)http://potassco.sourceforge.net
\(^{6}\)Alternatively, we may turn it into the “reward” way, i.e., turning it into \(\vdash \neg \text{Body}_i [\neg w_i] \), but the rule may not be in the input language of CLINGO.

range \(s_0 \) (denoted by \(\text{Range}(c) \)), where each of \(s_0, \ldots, s_n \) is a sort. A sorted propositional signature is a special case of propositional signatures constructed from a set of constants and their associated sorts, consisting of all propositional atoms \(c(\bar{u}) = v \) where \(c : s_1 \times \cdots \times s_n \rightarrow s_0 \), and \(\bar{u} \in s_1 \times \cdots \times s_n \), and \(v \in s_0 \).\(^{7}\) Symbol \(c(\bar{u}) \) is called an attribute and \(v \) is called its value. If the range \(s_0 \) of \(c \) is \(\{ f, t \} \) then \(c \) is called Boolean, and \(c(\bar{u}) = t \) can be abbreviated as \(c(\bar{u}) \) and \(c(\bar{u}) = f \) as \(\sim c(\bar{u}) \).

The signature of a P-log program is the union of two propositional signatures \(\sigma_1 \) and \(\sigma_2 \), where \(\sigma_1 \) is a sorted propositional signature, and \(\sigma_2 \) is a usual propositional signature consisting of atoms \(\text{Do}(c(\bar{u}) = v), \text{Obs}(c(\bar{u}) = v) \) and \(\text{Obs}(c(\bar{u}) \neq v) \) for all atoms \(c(\bar{u}) = v \) in \(\sigma_1 \).

A P-log program \(\Pi \) of signature \(\sigma_1 \cup \sigma_2 \) is a tuple

\[
\Pi = (R, S, P, \text{Obs, Act})
\]

where the signature of each of \(R, S, \) and \(P \) is \(\sigma_1 \) and the signature of each of \(\text{Obs} \) and \(\text{Act} \) is \(\sigma_2 \) such that

- **R** is a set of normal rules of the form

\[
A \leftarrow B_1, \ldots, B_m, \not B_{m+1}, \ldots, \not B_n
\]

where \(A, B_1, \ldots, B_n \) are atoms \((0 \leq m \leq n)\).

- **S** is a set of random selection rules of the form

\[
[r] \text{random}(c(\bar{u}) : x : p(x)) \leftarrow \text{Body}
\]

where \(r \) is a unique identifier, \(p \) is a boolean constant with a unary argument, and \(\text{Body} \) is a set of literals. \(x \) is a schematic variable ranging over the argument sort of \(p \).

Rule (5) is called a random selection rule for \(c(\bar{u}) \). Intuitively, rule (5) says that if \(\text{Body} \) is true, the value of \(c(\bar{u}) \) is selected at random from the set \(\text{Range}(c) \cap \{ x : p(x) \} \) unless this value is fixed by a deliberate action, i.e., \(\text{Do}(c(\bar{u}) = v) \) for some value \(v \).

- **P** is a set of so-called probability atoms (pr-atoms) of the form

\[
pr_r(c(\bar{u}) = v \mid C) = p
\]

where \(r \) is the identifier of some random selection rule for \(c(\bar{u}) \) in \(S \); \(c(\bar{u}) = v \in \sigma_1 \); \(C \) is a set of literals; and \(p \) is a real number in \([0, 1]\). We say pr-atom (6) is associated with the random selection rule whose identifier is \(r \).

- **Obs** is a set of atomic facts for representing “observation”: \(\text{Obs}(c(\bar{u}) = v) \) and \(\text{Obs}(c(\bar{u}) \neq v) \).

- **Act** is a set of atomic facts for representing a deliberate action: \(\text{Do}(c(\bar{u}) = v) \).

Semantics Let \(\Pi \) be a P-log program (4) of signature \(\sigma_1 \cup \sigma_2 \). The possible worlds of \(\Pi \), denoted by \(\tau(\Pi) \), are the stable models of \(\tau(\Pi) \), a (standard) ASP program with the propositional signature

\[
\sigma_1 \cup \sigma_2 \cup \{ \text{Intervene}(c(\bar{u})) \mid c(\bar{u}) \text{ is an attribute occurring in } S \}
\]

that accounts for the logical part of P-log. Due to lack of space we refer the reader to (Baral, Gelfond, and Rushin 2009) for the definition of \(\tau(\Pi) \).

\(^{7}\)Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order logic.
An atom \(c(\vec{u}) = v\) is called possible in a possible world \(W\) due to a random selection rule (5) if \(P\)-programs (5) such that \(W \models Body \land p(v) \land \neg Intervene(c(\vec{u}))\). Pr-atom (6) is applied in \(W\) if \(c(\vec{u}) = v\) is possible in \(W\) due to \(r\) and \(W \models C\).

As in (Baral, Gelfond, and Rushton 2009), we assume that all \(P\)-log programs \(\Pi\) satisfy the following conditions:

- **Condition 1 [Unique random selection rule]:** If a \(P\)-log program \(\Pi\) contains two random selection rules for \(c(\vec{u})\):

 \[
 \begin{align*}
 [r_1] & \quad random(c(\vec{u}) : \{x : p_1(x)\}) \leftarrow Body_1, \\
 [r_2] & \quad random(c(\vec{u}) : \{x : p_2(x)\}) \leftarrow Body_2,
 \end{align*}
 \]

 then no possible world of \(\Pi\) satisfies both \(Body_1\) and \(Body_2\).

- **Condition 2 [Unique probability assignment]:** If a \(P\)-log program \(\Pi\) contains a random selection rule for \(c(\vec{u})\):

 \[
 \begin{align*}
 [r] & \quad random(c(\vec{u}) : \{x : p(x)\}) \leftarrow Body
 \end{align*}
 \]

 along with two different pr-atoms:

 \[
 \begin{align*}
 pr_r(c(\vec{u}) = v | C_1) = p_1, \\
 pr_r(c(\vec{u}) = v | C_2) = p_2,
 \end{align*}
 \]

 then no possible world of \(\Pi\) satisfies \(Body, C_1\), and \(C_2\) together.

Given a \(P\)-log program \(\Pi\), a possible world \(W \in \omega(\Pi)\), and an atom \(c(\vec{u}) = v\) possible in \(W\), by Condition 1, it follows that there is exactly one random selection rule (5) such that \(W \models Body\). Let \(r_{W,c(\vec{u})}\) denote this random selection rule, and let \(AV_W(c(\vec{u})) = \{v’ | \text{there exists a pr-atom} \ pr_{r_{W,c(\vec{u})}}(c(\vec{u}) = v’ | C) = p \text{ that is applied in } W \text{ for some } C \} \). We then define the following notations:

- If \(v \in AV_W(c(\vec{u}))\), there exists a pr-atom \(pr_{r_{W,c(\vec{u})}}(c(\vec{u}) = v | C) = p \in \Pi \text{ for some } C \) and \(p\) such that \(W \models C\). By Condition 2, for any other \(pr_{r_{W,c(\vec{u})}}(c(\vec{u}) = v | C') = p' \in \Pi\), it follows that \(W \niv C'\). So there is only one pr-atom that is applied in \(W\) for \(c(\vec{u}) = v\), and we define

 \[
 PossWithAssPr(W, c(\vec{u}) = v) = p.
 \]

 ("\(c(\vec{u}) = v\) is possible in \(W\) with assigned probability \(p\)."")

- If \(v \notin AV_W(c(\vec{u}))\), we define

 \[
 PossWithDefPr(W, c(\vec{u}) = v) = \max (p, 0),
 \]

 where \(p\) is

 \[
 1 - \sum_{v' \in AV_W(c(\vec{u}))} PossWithAssPr(W, c(\vec{u}) = v')
 \]

 \[
 |\{v'' | c(\vec{u}) = v'' \text{ is possible in } W \text{ and } v'' \notin AV_W(c(\vec{u}))\}|
 \]

 ("\(c(\vec{u}) = v\) is possible in \(W\) with the default probability.")

 The max function is used to ensure that the default probability is nonnegative. 9

For each possible world \(W \in \omega(\Pi)\), and each atom \(c(\vec{u}) = v\) possible in \(W\), the probability of \(c(\vec{u}) = v\) to happen in \(W\) is defined as:

\[
P(W, c(\vec{u}) = v) =
\begin{cases}
PossWithAssPr(W, c(\vec{u}) = v) & \text{if } v \in AV_W(c(\vec{u})); \\
PossWithDefPr(W, c(\vec{u}) = v) & \text{otherwise}.
\end{cases}
\]

The unnormalized probability of a possible world \(W\) is defined as

\[
\mu_{\Pi}(W) = \prod_{c(\vec{u}) \in W \text{ and } c(\vec{u}) \neq v \text{ is possible in } W} P(W, c(\vec{u}) = v),
\]

and, assuming \(\Pi\) has at least one possible world with nonzero unnormalized probability, the normalized probability of \(W\) is defined as

\[
\tilde{\mu}_{\Pi}(W) = \frac{\mu_{\Pi}(W)}{\sum_{W_i \in \omega(\Pi)} \mu_{\Pi}(W_i)}.
\]

We say \(\Pi\) is consistent if \(\Pi\) has at least one possible world with a non-zero probability.

Example 3 Consider a variant of the Monty Hall Problem encoding in \(P\)-log from (Baral, Gelfond, and Rushton 2009) to illustrate the probabilistic nonmonotonicity in the presence of assigned probabilities. There are four doors, behind which are three goats and one car. The guest picks door 1, and Monty, the show host who always opens one of the doors with a goat, opens door 2. Further, while the guest and Monty are unaware, the statistics is that in the past, with 30% chance the prize was behind door 1, and with 20% chance, the prize was behind door 3. Is it still better to switch to another door? This example can be formalized in \(P\)-log program \(\Pi\), using both assigned probability and default probability, as

\[
\begin{align*}
\neg \text{CanOpen}(d) & \leftarrow \text{Selected} = d. \quad (d \in \{1, 2, 3, 4\}), \\
\neg \text{CanOpen}(d) & \leftarrow \text{Prize} = d. \\
\text{CanOpen}(d) & \leftarrow \neg \text{CanOpen}(d). \\
\text{random}(\text{Prize}). & \leftarrow \text{random}(\text{Selected}). \\
\text{random}(\text{Open} : \{x : \text{CanOpen}(x)\}). \\
pr(\text{Prize} = 1) & = 0.3. \quad pr(\text{Prize} = 3) = 0.2. \\
\text{Obs}(\text{Selected} = 1). & \text{Obs}(\text{Open} = 2). \quad \text{Obs}(\text{Prize} \neq 2).
\end{align*}
\]

The possible worlds of \(\Pi\) are as follows:

- \(W_1 = \{\text{Obs(Selected} = 1)\}, \text{Obs(Open} \neq 2\}, \text{Obs(Prize} \neq 2\}, \text{Selected} = 1, \text{Open} = 2, \text{Prize} = 1, \text{CanOpen}(1) = \text{t}, \text{CanOpen}(2) = \text{t}, \text{CanOpen}(3) = \text{t}, \text{CanOpen}(4) = \text{t}\).
- \(W_2 = \{\text{Obs(Selected} = 1)\}, \text{Obs(Open} \neq 2\}, \text{Obs(Prize} \neq 2\}, \text{Selected} = 1, \text{Open} = 2, \text{Prize} = 3, \text{CanOpen}(1) = \text{t}, \text{CanOpen}(2) = \text{t}, \text{CanOpen}(3) = \text{t}, \text{CanOpen}(4) = \text{t}\).
- \(W_3 = \{\text{Obs(Selected} = 1)\}, \text{Obs(Open} \neq 2\}, \text{Obs(Prize} \neq 2\}, \text{Selected} = 1, \text{Open} = 2, \text{Prize} = 4, \text{CanOpen}(1) = \text{t}, \text{CanOpen}(2) = \text{t}, \text{CanOpen}(3) = \text{t}, \text{CanOpen}(4) = \text{t}\).

The probability of each atom to happen is

\[
\begin{align*}
P(W_1, \text{Selected} = 1) & = \text{PossWithDefPr}(W, \text{Selected} = 1) = 1/4 \\
P(W_2, \text{Open} = 2) & = \text{PossWithDefPr}(W_2, \text{Open} = 2) = 1/3 \\
P(W_3, \text{Open} = 2) & = \text{PossWithDefPr}(W_3, \text{Open} = 2) = 1/2 \\
P(W_1, \text{Prize} = 1) & = \text{PossWithAssPr}(W_1, \text{Prize} = 1) = 0.3 \\
P(W_2, \text{Prize} = 3) & = \text{PossWithAssPr}(W_2, \text{Prize} = 3) = 0.2 \\
P(W_3, \text{Prize} = 4) & = \text{PossWithDefPr}(W_3, \text{Prize} = 4) = 0.25
\end{align*}
\]

So,
• $\mu_{W_1} = 1/4 \times 1/3 \times 0.3 = 1/40$
• $\mu_{W_2} = 1/4 \times 1/2 \times 0.2 = 1/40$
• $\mu_{W_3} = 1/4 \times 1/2 \times 0.25 = 1/32$.

Thus, in comparison with staying (W_1), switching to door 3 (W_2) does not affect the chance, but switching to door 4 (W_3) increases the chance by 25%.

Turning P-log into L^p_{MLN}

We define translation $\text{plog2pmln}(\Pi)$ that turns a P-log program Π into an L^p_{MLN} program in a modular way. First, every rule R in $\tau(\Pi)$ (that is used in defining the possible worlds in P-log) is turned into a hard rule $\alpha : R$ in $\text{plog2pmln}(\Pi)$. In addition, $\text{plog2pmln}(\Pi)$ contains the following rules to associate probability to each possible world of Π. Below x, y denote schematic variables, and W is a possible world of Π.

Possible Atoms: For each random selection rule (5) for $c(\bar{u})$ in \mathcal{S} and for each $v \in \text{Range}(c)$, $\text{plog2pmln}(\Pi)$ includes

$$\text{Posts}_v(c(\bar{u}) = v) \leftarrow \text{Body}, p(v), \text{not Intervene}(c(\bar{u}))$$

Rule (8) expresses that $c(\bar{u}) = v$ is possible in W due to r if $W \models \text{Body} \land p(v) \land \neg \text{Intervene}(c(\bar{u}))$.

Assigned Probability: For each pr-atom (6) in \mathcal{P}, $\text{plog2pmln}(\Pi)$ contains the following rules:

$$\alpha : \text{PossWithAssPr}_{r,C}(c(\bar{u}) = v) \leftrightarrow \text{Poss}_v(c(\bar{u}) = v), C$$

$$\alpha : \text{AssPr}_{r,C}(c(\bar{u}) = v) \leftrightarrow c(\bar{u}) = v, \text{PossWithAssPr}_{r,C}(c(\bar{u}) = v)$$

$$\ln(p) : \bot \leftarrow \text{not AssPr}_{r,C}(c(\bar{u}) = v) \quad (p > 0)$$

$$\alpha : \bot \leftarrow \text{AssPr}_{r,C}(c(\bar{u}) = v) \quad (p = 0)$$

$$\alpha : \text{PossWithAssPr}_{r,C}(c(\bar{u}) = v) \leftrightarrow \text{PossWithAssPr}_{r,C}(c(\bar{u}) = v).$$

Rule (9) expresses the condition under which pr-atom (6) is applied in a possible world W. Further, if $c(\bar{u}) = v$ is true in W as well, rules (10) and (11) contribute the assigned probability $\ln(p) = p$ to the unnormalized probability of W as a factor when $p > 0$.

Denominator for Default Probability: For each random selection rule (5) for $c(\bar{u})$ in \mathcal{S} and for each $v \in \text{Range}(c)$, $\text{plog2pmln}(\Pi)$ includes

$$\alpha : \text{PossWithDefPr}_{r}(c(\bar{u}) = v) \leftrightarrow \text{Poss}_v(c(\bar{u}) = v), \text{not PossWithAssPr}_{r}(c(\bar{u}) = v)$$

$$\alpha : \text{NumDefPr}_{r}(c(\bar{u}), x) \leftrightarrow c(\bar{u}) = v, \text{PossWithDefPr}_{r}(c(\bar{u}) = v), x = \# \text{count}(y : \text{PossWithDefPr}_{r}(c(\bar{u}) = y))$$

$$\ln(\frac{1}{m}) : \bot \leftarrow \text{not NumDefPr}_{r}(c(\bar{u}), m) \quad (m = 2, \ldots, |\text{Range}(c)|)$$

Rule (12) asserts that $c(\bar{u}) = v$ is possible in W with a default probability if it is possible in W and not possible with an assigned probability. Rule (13) expresses, intuitively, that $\text{NumDefPr}_{r}(c(\bar{u}), x)$ is true if there are exactly x different values v such that $c(\bar{u}) = v$ is possible in W with a default probability, and there is at least one of them that is also true in W. This value x is the denominator of (7). Then rule (14) contributes the factor $1/x$ to the unnormalized probability of W as a factor.

Numerator for Default Probability:

• Consider each random selection rule $[r]$ $\text{random}(c(\bar{u}) : \{x : p(x)\}) \leftarrow \text{Body}$ for $c(\bar{u})$ in \mathcal{S} along with all pr-atoms associated with it in \mathcal{P}:

$$\alpha : \text{RemPr}_{r}(c(\bar{u}), x \leftarrow \text{Body})$$

$$\alpha : \text{TotalDefPr}_{r}(c(\bar{u}), x, x > 0) \quad (16)$$

$$\alpha : \bot \leftarrow \text{not TotalDefPr}_{r}(c(\bar{u}), x)$$

In rule (15), y is the sum of all assigned probabilities. Rules (16) and (17) are to account for the numerator of (7) when $n > 0$. The variable x stands for the numerator of (7). Rule (18) is to avoid assigning a non-positive default probability to a possible world.

Note that most rules in $\text{plog2pmln}(\Pi)$ are hard rules. The soft rules (11), (14), (17) cannot be simplified as atomic facts, e.g., $\ln(\frac{1}{m}) : \text{NumDefPr}_{r}(c(\bar{u}), m)$ in place of (14), which is in contrast with the use of probabilistic choice atoms in the distribution semantics based probabilistic logic programming language, such as ProbLog. This is related to the fact that the probability of each atom to happen in a possible world in P-log is derived from assigned and default probabilities, and not from independent probabilistic choices like the other probabilistic logic programming languages. In conjunction with the embedding of ProbLog in L^p_{MLN} (Lee and Wang 2016), it is interesting to note that both kinds of probabilities can be captured in L^p_{MLN} using different kinds of rules.

Example 3 Continued For the program Π in Example 3, $\text{plog2pmln}(\Pi)$ consists of the rules $\alpha : R$ for each rule R in $\tau(\Pi)$ and the following rules.

Possible Atoms:

$$\alpha : \text{Poss}(\text{Price} = d) \leftarrow \text{not Intervene(Price)}$$

$$\alpha : \text{Poss}(\text{Selected} = d) \leftarrow \text{not Intervene(Selected)}$$

$$\alpha : \text{Poss}(\text{Open} = d) \leftarrow \text{CanOpen}(d), \text{not Intervene(Open)}$$

The sum aggregate can be represented by ground first-order formulas under the stable model semantics under the assumption that the Herbrand Universe is finite (Ferraris 2011). In the general case, it can be represented by generalized quantifiers (Lee and Meng 2012) or infinitary propositional formulas (Harrison, Lifschitz, and Yang 2014). In the input language of ASP solvers, which does not allow real number arguments, p_i can be approximated to integers of some fixed interval.
For every possible world \(\Pi \) of \(\phi \) such that each \(\Pi \) is a probabilistic stable model of \(\Pi \), the restriction of \(\Pi \) onto the signature of the \(\Pi \), denoted \(\Pi_{\Pi}(\tau(\Pi)) \), is a possible world of \(\Pi \) and \(\mu_{\Pi}(\Pi_{\Pi}(\tau(\Pi))) > 0 \).

Example 3 Continued For the P-log program \(\Pi \) for the Monty Hall problem, \(\Pi' = \text{plog}2\text{pmln}(\Pi) \) has three probabilistic stable models \(I_1, I_2, \) and \(I_3 \), each of which is an extension of \(W_1, W_2, \) and \(W_3 \) respectively, and satisfies the following axioms: \(\text{Poss}(\text{Prize} = i) \) for \(i = 1, 2, 3, 4 \); \(\text{Poss}(\text{Selected} = i) \) for \(i = 1, 2, 3, 4 \); \(\text{PossWithAssPr}(\text{Prize} = i) \) for \(i = 1, 3 \); \(\text{PossWithDefPr}(\text{Prize} = i) \) for \(i = 2, 4 \); \(\text{NumDefPr}(\text{Selected} = i) \) for \(i = 1, 2, 3, 4 \); and \(\text{NumDefPr}((\text{Selected} = i) \iff \text{PossWithAssPr}(\text{Prize} = i)) \). In addition,
In this paper, we show how P-log is related to weak answer sets. This work was partially supported by the National Science Foundation under Grants IIS-1319794 and IIS-1526301.

Acknowledgments We are grateful to Evgenii Balai, Yi Wang and anonymous referees for their useful comments on the draft of this paper. This work was partially supported by the National Science Foundation under Grants IIS-1319794 and IIS-1526301.

References

