Label Efficient Learning by Exploiting Multi-Class Output Codes

Maria Florina Balcan
School of Computer Science
Carnegie Mellon University
ninamf@cs.cmu.edu

Travis Dick
School of Computer Science
Carnegie Mellon University
tdick@cs.cmu.edu

Yishay Mansour
Microsoft Research and
Tel Aviv University
mansour@tau.ac.il

Abstract

We present a new perspective on the popular multi-class algorithmic techniques of one-vs-all and error correcting output codes. Rather than studying the behavior of these techniques for supervised learning, we establish a connection between the success of these methods and the existence of label-efficient learning procedures. We show that in both the realizable and agnostic cases, if output codes are successful at learning from labeled data, they implicitly assume structure on how the classes are related. By making that structure explicit, we design learning algorithms to recover the classes with low label complexity. We provide results for the commonly studied cases of one-vs-all learning and when the codewords of the classes are well separated. We additionally consider the more challenging case where the codewords are not well separated, but satisfy a boundary features condition that captures the natural intuition that every bit of the codewords should be significant.

1 Introduction

Motivation: Large scale multi-class learning problems with an abundance of unlabeled data are ubiquitous in modern machine learning. For example, an in-home assistive robot needs to learn to recognize common household objects, familiar faces, facial expressions, gestures, and so on in order to be useful. Such a robot can acquire large amounts of unlabeled training data simply by observing its surroundings, but it would be prohibitively time consuming (and frustrating) to ask its owner to annotate any significant portion of this raw data. More generally, in many modern learning problems we often have easy and cheap access to large quantities of unlabeled training data (e.g., on the internet) but obtaining high-quality labeled examples is relatively expensive. More examples include text understanding, recommendation systems, or wearable computing (Thrun 1996; Thrun and Mitchell 1995b; 1995a; Mitchell et al. 2015). The scarcity of labeled data is especially pronounced in problems with many classes, since supervised learning algorithms require labeled examples from every class. In such settings, algorithms should make the best use of unlabeled data in order to minimize the need for expensive labeled examples.

Overview: We approach label-efficient learning by making the implicit assumptions of popular multi-class learning algorithms explicit and showing that they can also be exploited when learning from limited labeled data. We focus on a family of techniques called output codes that work by decomposing a given multi-class problem into a collection of binary classification tasks (Mohri, Rostamizadeh, and Talwalkar 2012; Dietterich and Bakiri 1995; Langford and Beygelzimer 2005; Beygelzimer, Langford, and Ravikumar 2009). The novelty of our results is to show that the existence of various low-error output codes constrains the distribution of unlabeled data in ways that can be exploited to reduce the label complexity of learning. We consider both the consistent setting, where the output code achieves zero error, and the agnostic setting, where the goal is to compete with the best output code. The most well known output code technique is one-vs-all learning, where we learn one binary classifier for distinguishing each class from the union of the rest. When output codes are successful at learning from labeled data, it often implies geometric structure in the underlying problem. For example, if it is possible to learn an accurate one-vs-all classifier with linear separators, it implies that no three classes can be collinear, since then it would be impossible for a single linear separator to distinguish the middle class from the union of the others. In this work, we exploit this implicitly assumed structure to design label-efficient algorithms for the commonly assumed cases of one-vs-all and error correcting output codes, as well as a novel boundary features condition that captures the intuition that every bit of the codewords should be significant.

Our results: Before discussing our results, we briefly review the output code methodology. For a problem with L classes, a domain expert designs a code matrix $C \in \{\pm 1\}^{L \times m}$ where each column partitions the classes into two meaningful groups. The number of columns m is chosen by the domain expert. For example, when recognizing household objects we could use the following true/false questions to define the partitions: “is it made of wood?”, “is it sharp?”, “does it have legs?”, “should I sit on it?”, and so on. Each row of the code matrix describes one of the classes in terms of these partitions (or semantic features). For example, the class “table” could be described by the vector $(+1, -1, +1, -1)$, which is called the class’ codeword. Once the code matrix has been designed, we train an
output code by learning a binary classifier for each of the binary partitions (e.g., predicting whether an object is made of wood or not). To predict the class of a new example, we predict its codeword in \(\{\pm 1\}^m \) and output the class with the nearest codeword under the Hamming distance. Two popular special cases of output codes are one-vs-all learning, where \(C \) is the identity matrix (with -1 in the off-diagonal entries), and error correcting output codes, where the Hamming distance between the codewords is large.

In each of our results we assume that there exists a consistent or low-error linear output code classifier and we impose constraints on the code matrix and the distribution that generates the data. We present algorithms and analysis techniques for a wide range of different conditions on the code matrix and data distribution to showcase the variety of implicit structures that can be exploited. For the code matrix, we consider the case when the codewords are well separated (i.e., the output code is error correcting), the case of one-vs-all (where the code matrix is the identity), and a natural case of linear output codes where the Hamming distance between codewords is large.

Error correcting output codes: We first showcase how to exploit the implicit structure assumed by the commonly used and natural case of linear output codes where the Hamming distance between codewords is large. In practice, output codes are designed to have this property in order to be robust to prediction errors for the binary classification tasks (Dietterich and Bakiri 1995). We suppose that the output code makes at most \(\beta \) errors when predicting codewords and has codewords with Hamming distance at least \(2\beta + d + 1 \) in a \(d \)-dimensional problem. The key insight is that when the code words are well separated, this implies that points belonging to different classes must be geometrically separated as well. This suggests that tight clusters of data will be label-homogeneous, so we should be able to learn an accurate classifier using only a small number of label queries per cluster. The main technical challenge is to show that our clustering algorithm will not produce too many clusters (in order to keep the label complexity controlled), and that with high probability, a new sample from the distribution will have the same label as its nearest cluster. We show that when the data density satisfies a thick-level set condition (requiring that its level sets do not have bridges or cusps that are too thin), then a single-linkage clustering algorithm can be used to recover a small number of label-homogeneous clusters.

One-vs-all: Next, we consider the classic one-vs-all setting for data in the unit ball. This is an interesting setting because of the popularity of one-vs-all classification and because it significantly relaxes the assumption that the codewords are well separated (in a one-vs-all classifier, the Hamming distance between codewords is exactly 2). The main challenge in this setting is that there need not be a margin between classes and a simple single-linkage style clustering might group multiple classes into the same cluster. To overcome this challenge, we show that the classes are probabilistically separated in the following sense: after projecting onto the surface of the unit ball, the level sets of the projected density are label-homogeneous. Equivalently, the high-density regions belonging to different classes must be separated by low-density regions. We exploit this structure by estimating the connected components of the \(\epsilon \) level set using a robust single-linkage clustering algorithm.

The boundary features condition: We introduce an interesting and natural condition on the code matrix capturing the intuition that every binary learning task should be significant. This condition has the weakest separation requirement, allowing the codewords to have a Hamming distance of only 1. This setting is our most challenging, since it allows for the classes to be very well connected to one another, which prevents clustering or level set estimation from being used to find a small number of label-homogeneous clusters. Nevertheless, we show that the implicit geometric structure implied by the output code can be exploited to learn using a small number of label queries. In this case, rather than clustering the unlabeled sample, we apply a novel hyperplane-detection algorithm that uses the absence of data to learn local information about the boundaries between classes. We then use the implicit structure of the output code to extend these local boundaries into a globally accurate classifier.

Agnostic Setting: Finally, we show that our results for all three settings can be extended to an agnostic learning scenario, where we do not assume that there exists a consistent output code classifier and the goal is to compete with the best linear output code.

Our results show an interesting trend: when linear output codes are able to learn from labeled data, it is possible to exploit the same underlying structure in the problem to learn using a small number of label requests. Our results hold under several natural assumptions on the output code and general conditions on the data distribution, and employ both clustering and hyperplane detection strategies to reduce the label complexity of learning.

Full proofs of all our results can be found in the full version of the paper (Balcan, Dick, and Mansour 2016), while we present the modeling and technical flow of ideas here.

2 Related Work

Reduction to binary classification is one of the most widely used techniques in applied machine learning for multi-class problems. Indeed, the one-vs-all, one-vs-one, and the error correcting output code approaches (Dietterich and Bakiri 1995) all follow this structure (Mohri, Rostamizadeh, and Talwalkar 2012; Langford and Beygelzimer 2005; Beygelzimer, Langford, and Ravikumar 2009; Daniely, Schapira, and Shahaf 2012; Allwein, Schapire, and Singer 2000).
There is no prior work providing error bounds for output codes using unlabeled data and interaction. There has been a long line of work for providing provable bounds for semi-supervised learning (Balcan, Blum, and Yang 2004; Balcan and Blum 2010; Blum and Mitchell 1998; Chapelle, Schlkopf, and Zien 2010) and active learning (Balcan, Beygelzimer, and Lanford 2006; Dasgupta 2011; Balcan and Urner 2015; Hanneke 2014). These works provide bounds on the benefits of unlabeled data and interaction for significantly different semi-supervised and active learning methods that are based different assumptions, often focusing on binary classification, thus the results are largely incomparable. Another line of recent work considers the multi-class setting and uses unlabeled data to consistently estimate the risk of classifiers when the data is generated from a known family of models (Donmez, Lebanon, and Balasubramanian 2010; Balasubramanian, Donmez, and Lebanon 2011a; 2011b). Their results do not immediately imply learning algorithms and they consider generative assumptions, while in contrast our work explicitly designs learning algorithms under commonly used discriminative assumptions.

Another work related to ours is that of Balcan, Blum, and Mansour (2013), where labels are recovered from unlabeled data. The main tool that they use in order to recover the labels is the assumption that there are multiple views and an underlying ontology that are known, and restrict the possible labeling. Similarly, Steinhardt and Liang (2016) show how to use the method of moments to estimate the risk of a model from unlabeled data under the assumption that the data has three independent views. Our work is more widely applicable, since it applies when we have only a single view.

The output-code formalism is also used by Palatucci et al. (2009) for the purpose of zero shot learning. They demonstrate that it is possible to exploit the semantic relationships encoded in the code matrix to learn a classifier from labeled data that can predict accurately even classes that did not appear in the training set. These techniques make very similar assumptions to our work but require that the code matrix is known and the problem that they solve is different.

Finally, we use the following notation throughout the paper: for any set \(A \) in a metric space \((X,d)\), the \(\sigma \)-interior of \(A \) is the set \(\text{int}_\sigma(A) = \{ x \in A : B(x,\sigma) \subset A \} \). The notation \(O(\cdot) \) suppresses logarithmic terms.

4 Error Correcting Output Codes

We first consider the implicit structure when there exists a consistent linear error correcting output code classifier:

Assumption 1. There exists a code matrix \(C \in \{ \pm 1 \}^{L \times m} \) and linear functions \(h_1, \ldots, h_m \) such that: (1) there exists \(\beta \geq 0 \) such that any point \(x \) from class \(y \) satisfies \(d_{\text{Ham}}(h(x), C_y) \leq \beta \), (2) The Hamming distance between the codewords of \(C \) is at least \(2\beta + d + 1 \), and (3) at most \(d \) of the separators \(h_1, \ldots, h_m \) intersect at any point.

Part (1) of this condition is a bound on the number of linear separators that can make a mistake when the output code predicts the codeword of a new example, part (2) formalizes the requirement of having well separated codewords, and part (3) requires that the hyperplanes be in general position, a very mild condition that can be satisfied by adding an arbitrarily small perturbation to the linear separators.

Despite being very natural, Assumption 1 conveniently implies that there is a margin between classes.

Lemma 1. Under Assumption 1, there exists \(g > 0 \) s.t. any points \(x \) and \(x' \) with different labels satisfy \(\| x - x' \| > g \).

Lemma 1 suggests a clustering based approach. Any single-linkage style clustering algorithm that only merges clusters closer than distance \(g \) will produce label-homogeneous clusters, so we can query the label of a single point per cluster. See Algorithm 1 for pseudocode.

Input:
- Sample \(S = \{ x_1, \ldots, x_n \} \), \(r_c > 0 \), \(\epsilon > 0 \).

1. Let \(\{ \tilde{A}_i \}_{i=1}^N \) be the connected components of the graph \(G \) with vertex set \(S \) and an edge between \(x_i \) and \(x_j \) if \(\| x_i - x_j \| \leq r_c \).
2. In decreasing order of size, query the label of each \(\tilde{A}_i \) until \(\leq \epsilon n \) points belong to unlabeled clusters.
3. Output \(\hat{f}(x) = \text{label of nearest labeled cluster to } x \).

Algorithm 1: Single-linkage learning.

In order to get a meaningful reduction in label complexity, we need to ensure that most of the samples belong to a small number of clusters. For this purpose, we borrow the following very general and interesting thick level set condition from Steinwart (2015): a density function \(p \) has \(C \)-thick level sets if there exists a level \(\lambda_0 > 0 \) and a radius \(\sigma_0 > 0 \) such that for every level \(\lambda \leq \lambda_0 \) and radius \(\sigma < \sigma_0 \), (1) the \(\sigma \)-interior of \(\{ p \geq \lambda \} \) is non-empty and (2) every point in \(\{ p \geq \lambda \} \) is at most distance \(C\sigma \) from the \(\sigma \)-interior. This condition elegantly characterizes a large family of distributions for which single-linkage style clustering algorithms succeed at recovering the high-density clusters and only rules out distributions whose level sets have bridges or
CUSP.

The thickness parameter C measures how pointed the boundary of the level sets of p can be. For example, in \mathbb{R}^d if the level set of p is a ball then $C = 1$, while if the level set is a cube, then $C = \sqrt{d}$.

Using the thick level set condition to guarantee that our clustering algorithm will not subdivide the high-density clusters of p, we obtain the following result for Algorithm 1.

Theorem 1. Suppose that Assumption 1 holds and that the data distribution has C-thick level sets. For any target error $\epsilon > 0$, let N be the number of connected components of $\{ p \geq \epsilon/(2 \text{Vol}(K)) \}$.

Algorithm 1. Hierarchical single-linkage learning.

With probability at least $1 - \delta$, running Algorithm 1 with parameter $r_0 = g$ on an unlabeled sample of size $n = \tilde{O}(\frac{1}{\epsilon}(4C)^{2d}d^{d+1}/r^2 + N))$ will query at most N labels and output a classifier with error at most ϵ.

The exponential dependence on the dimension in Theorem 1 is needed to ensure the sample S will be a fine covering of the level set of p w.h.p., which guarantees that Algorithm 1 will not subdivide its connected components into smaller clusters. When the data has low intrinsic dimensionality, the unlabeled sample complexity is only exponential in the intrinsic dimension. In particular, under the common assumption that the distribution is a doubling measure, the unlabeled sample complexity is exponential only in the doubling dimension. A probability measure P has doubling dimension D if for all points x in the support of P and every radius $r > 0$, we have that $P(B(x, 2r)) \leq 2^D P(B(x, r))$ (see, for example, (Dasgupta and Sinha 2013)).

Theorem 2. Suppose that Assumption 1 holds the data distribution P has doubling dimension D, and the support of P has N connected components. With probability at least $1 - \delta$, running Algorithm 1 with parameter $r_0 = g$ on a sample of size $n = \tilde{O}(d/r^2 + N/c^2)$ will query at most N labels and have error at most ϵ.

The unlabeled sample complexity and parameter settings in Theorem 1 depend on the gap g. Such a scale parameter must appear in our results, since Assumption 1 is scale-invariant, yet our algorithm exploits scale-dependent geometric properties of the problem. If we have a conservatively small estimate $\hat{g} \leq g$, then the conclusion of Theorem 1 and Theorem 2 continue to hold if the connection radius and unlabeled sample complexity are set using the estimate \hat{g}. Nevertheless, in some cases we may not have an estimate of g. The following result shows that if we have an estimate of the number of high-density clusters, and these clusters have roughly balanced probability mass, then we are still able to take advantage of the geometric structure even when the distance g is unknown. The idea is to construct a hierarchical clustering of S using single linkage, and then to use a small number of label queries to find a good pruning. See Algorithm 2 for pseudocode.

Theorem 3. Suppose Assumption 1 holds and the density p has C-thick level sets. For any $0 < \epsilon < 1/2$, suppose that $\{A_i\}_{i=1}^N$ are the connected components of $\{ p \geq \epsilon/(2 \text{Vol}(K)) \}$ and for some $\alpha \geq 1$ we have $P(A_i) \leq \alpha P(A_j)$ for all i, j. With probability $\geq 1 - \delta$, running Algorithm 2 with $T = \mathcal{O}(\alpha N)$ on an unlabeled sample of size $n = \tilde{O}(\frac{1}{\epsilon^2}C^{2d}d^{d+1}/g^{2d} + N))$ will have error $\leq \epsilon$.

Algorithm 2: Hierarchical single-linkage learning.

In this section we showed that when there exists linear error correcting correcting output code with low error, then it is possible to reduce the label complexity of learning to the number of high-density clusters, which are the connected components of $\{ p \geq \epsilon \}$.

5 One-Versus-All on the Unit Ball

In this section we show that even when the codewords are not well separated, we can still exploit the implicit structure of output codes to reduce the label complexity of learning by clustering the data. Specifically, we consider the implicit structure of a linear one-vs-all classifier over the unit ball:

Assumption 2. The instance space \mathcal{X} is the unit ball and there exist L linear separators h_1, \ldots, h_L such that: (1) point x belongs to class i iff $h_i(x) > 0$, and (2) for all i, $h_i(x) = w_i^T x - b_i$ with $\|w_i\| = 1$ and $b_i \geq b_{\min} > 0$.

See Figure 1 for an example problem satisfying this condition. Since a one-vs-all classifier is an output code where the code matrix is the identity, the Hamming distance between any pair of codewords is exactly 2. In this setting we do not have a result similar to Lemma 1 ensuring geometric separation of the classes. Instead, we exploit the one-vs-all structure to show the classes are probabilistically separated and use a robust clustering algorithm.

As before, we study this problem under a mild constraint on the data distribution. For each class i, denote the set of points in class i by $K_i = \{ x : \|x\| \leq 1, h_i(x) > 0 \}$ and let $K = \bigcup_{i=1}^L K_i$. In this section, we assume that the density p is supported on K with upper and lower bounds:

Assumption 3. There exist constants $0 < c_{lb} \leq c_{ub}$ s.t. for $x \in K$ we have $c_{lb} \leq p(x) \leq c_{ub}$ and otherwise $p(x) = 0$.

This distributional constraint is quite general: it only requires that the density is supported on examples for which exactly one linear separator claim the point is positive and the density does not take extreme values.
Our algorithm for this setting projects the data onto the unit sphere \(S^{d-1} = \{ x \in \mathbb{R}^d : \|x\| = 1 \} \) followed by a robust clustering algorithm. The projection does not introduce errors, since each linear separator carves out a spherical cap for its class, and no two class caps overlap. Given that no class contains the origin, an examples label depends only on its projection to the sphere. We show that projecting to the sphere has the useful property that the projected density goes to zero at the boundary of the classes, leading to probabilistic separation. Algorithm 3 gives pseudocode, using the notation \(\theta(u, v) \) for the angle between \(u \) and \(v \) and \(V^d(r) \) for the probability that a uniformly random sample from \(S^{d-1} \) lands in a given spherical cap of angular radius \(r \).

Input: Sample \(S = \{ x_1, \ldots, x_n \} \), \(r_c > 0 \), \(\epsilon > 0 \).
1. Define \(r_a = r_c/2 \) and \(\tau = \frac{c_n}{2c_{lb}} V^d(r_a) \).
2. Let \(v_i = \frac{x_i}{\|x_i\|} \) be the projection of \(x_i \) to the sphere.
3. Mark \(v_i \) active if \(|\{ v_j : \theta(v_i, v_j) \leq r_a \}| \geq \tau n \) and inactive otherwise for \(i \in [n] \).
4. Let \(A_1, \ldots, A_N \) be the connected components of the graph \(G \) whose vertices are the active \(v_i \) with an edge between \(v_i \) and \(v_j \) if \(\theta(v_i, v_j) < r_c \).
5. In decreasing order of size, query the label of each \(A_i \) until \(\frac{\tau}{\epsilon} n \) points belong to unlabeled clusters.
6. Output \(f(x) = \text{label of nearest cluster to } x/\|x\| \).

Algorithm 3: Robust single-linkage learning.

Our first result characterizes the density of the projected data (defined relative to the uniform distribution on \(S^{d-1} \)).

Lemma 2. Suppose Assumptions 2 and 3 hold and let \(q : S^{d-1} \to [0, \infty) \) be the density function of the data projected onto the unit sphere. Then \(q_{lb}(v) \leq q(v) \leq q_{ub}(v) \), where

\[
q_{lb}(v) = \begin{cases}
0 & \text{if } v \in K_i \\
\tilde{c}_0 \cdot v_d (1 - (b_i/\|w_i\|)^d) & \text{if } i \in K_i \\
0 & \text{otherwise},
\end{cases}
\]

and \(q_{ub}(v) = c_n \cdot c_{lb} \cdot q_{lb}(v) \), where \(v_d \) is the volume of the unit ball in \(d \) dimensions.

Both bounds are defined piecewise with one piece for each class. Restricted to class \(i \), both \(q_{lb}(v) \) and \(q_{ub}(v) \) are decreasing functions of \(\theta(w_i, v) \), which implies that their \(\lambda \)-level sets are spherical caps. Therefore, each class contributes one large connected component to the level set of \(q \) that is roughly a spherical cap centered at the point \(w_i \) and the density of \(q \) goes to zero at the boundary of each class. Our main result is as follows:

Theorem 4. Suppose Assumptions 2 and 3 hold and that \(f^* \) is consistent. There exists an \(r_c \) satisfying \(r_c = \Omega(c_n \cdot c_{lb} \cdot (c_n b_{\min}^2)) \) such that with probability at least \(1 - \delta \), running Algorithm 3 with parameter \(r_c \) on an unlabeled sample of size \(n = O((c_n b_{\min}^2/(c_n^2 b_{\min}^2)) \epsilon^d) \) will query at most \(L \) labels and output a classifier with error at most \(\epsilon \).

If the scale parameter \(b_{\min} \) is unknown, Theorem 4 continues to hold if we use an underestimate \(\tilde{b}_{\min} \leq b_{\min} \).

There are two main differences between the sample complexity of Theorem 4 and the results from Section 4. First, the unlabeled sample complexity now has an \(\epsilon^{-2d} \) dependence, rather than only \(\epsilon^{-2} \).

6 The Boundary Features Condition

In this section we introduce a novel condition on the code matrix called the boundary features condition that captures the intuition that every binary classification task should be significant. Assumption 4 formalizes this intuition.

Assumption 4. There exists a code matrix \(C \in \{ \pm 1 \}^{L \times m} \), linear functions \(h_1, \ldots, h_m \), and a scale parameter \(R > 0 \) so that: (1) for any point \(x \) in class \(y \), we have \(h(x) = C_y \); (2) for each \(h_j \), there exists a class \(i \) such that negating the \(j \)-th entry of \(C_i \) produces a codeword \(C_i' \) not in \(C \) and there exists a point \(x \) on the hyperplane \(h_j = 0 \) such that every point in \(B(x, R) \) has either codeword \(C_i \) or \(C_i' \); and (3) any pair of points \(x, x' \) in \(X \) such that \(h(x) \neq h(x') \) are not codewords in \(C \) and \(h(x) \neq h(x') \) must have \(\|x - x'\| \geq R \).

Part (1) requires that the output code classifier is consistent, part (2) guarantees that every linear separator \(h_i \) separates at least one class \(i \) from a region of space that does not belong to any class, and part (3) requires that points with codewords not in the code matrix must either have the same codeword or be separated by distance \(R \). Part (3) simplifies both our algorithm and analysis and is trivially satisfied in cases where all points in \(X \) that do not belong to any class have the same codeword, as in the one-vs-all setting.

This setting is more challenging than in the previous sections because we are unable to apply clustering-based learning strategies. For example, if the Hamming distance between a pair of codewords is one, then one of the linear separators \(h_i \) forms a shared boundary between those classes, potentially allowing them to be well connected.

Instead, our algorithm uses the absence of data to directly learn the linear separators \(h_1, \ldots, h_m \). It searches for balls of...
radius r whose centers are sample points such that one half of the ball contains very few samples. If a half-ball contains few sample points, then it must be mostly disjoint from the set K. But since its center belongs to the set K, this means that the hyperplane defining the half-ball is a good approximation one of the true hyperplanes. See Figure 2 for examples of half-balls that would pass and fail this test. The collection H of hyperplanes obtained in this way partition the space into cells. Our algorithm queries the labels of the cells containing the most sample points and classifies test points based on the label of their cell in the partition (and if the label is unknown, we output a random label). Pseudocode is given in Algorithm 4 using the following notation: for any center $x \in \mathcal{X}$, radius $r \geq 0$, and direction $w \in S^{d-1}$, let $B^{1/2}(x, r, w) = \{y \in B(x, r) : w^\top(y - x) > 0\}$ and define $p^{1/2}(r) = \frac{1}{2}c_{\text{ln}}p^{d}v_d$.

<table>
<thead>
<tr>
<th>Algorithm 4: Plane-detection algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Sample $S = {x_1, \ldots, x_n}$, $r > 0$, $\tau > 0$.</td>
</tr>
<tr>
<td>1. Initialize set of candidate hyperplanes $H = \emptyset$.</td>
</tr>
<tr>
<td>2. For all samples $x \in S$ with $B(\bar{x}, r) \subset \mathcal{X}$:</td>
</tr>
<tr>
<td>(a) Let $\hat{w} = \arg\min_{w \in S^{d-1}}</td>
</tr>
<tr>
<td>(b) If $</td>
</tr>
<tr>
<td>3. Let ${C_i}_{i=1}^N$ be the partitioning of \mathcal{X} induced by H.</td>
</tr>
<tr>
<td>4. Query the label of the L cells with the most samples.</td>
</tr>
<tr>
<td>5. Output $\hat{f}(x) = \text{label of } C_i$ containing x.</td>
</tr>
</tbody>
</table>

Theorem 5. Suppose Assumptions 3 and 4 hold. For any desired error $\epsilon > 0$, with probability at least $1 - \delta$, running Algorithm 4 with parameters $r = R/2$ and $\tau = \Omega p^{1/2}(r)/2$ for a known constant α on on a sample of size $n = O((\alpha^2 + \epsilon^2)(\gamma^2 + \epsilon^4))$ will have error at most ϵ.

If the scale parameter R is unknown, the conclusions of Theorem 5 still hold if we use an underestimate $\hat{R} \leq R$.

7 Extensions to the Agnostic Setting

Most of our algorithms have two phases: first, we extract a partitioning of the unlabeled data into groups that are likely label-homogeneous, and second, we query the label of the largest groups. We can extend our results for these algorithms to the agnostic setting by querying multiple labels from each group and using the majority label.

Specifically, suppose that the data is generated according to a distribution P over $\mathcal{X} \times [L]$ and there exists a labeling function f^* such that $P_{\mathcal{X}}(y) - P_{\mathcal{X}}(f^*(x) \neq y) \leq \eta$ and our assumptions hold when the unlabeled data is drawn from the marginal $P_{\mathcal{X}}$ but the labels are assigned by f^*. That is, there is a function f^* satisfying our assumptions such that the true label disagrees with f^* with probability at most η. In this setting, the first phase of our algorithms, which deals with only unlabeled data, behaves exactly as in the realizable setting. The only difference is that we will need to query multiple labels from each group of data to ensure that the majority label is the label predicted by f^*. Suppose that the training data is $(x_1, y_1), \ldots, (x_n, y_n)$ drawn from P (where the labels y_i are initially unobserved). For $n = \tilde{O}(1/\eta^2)\$, we are guaranteed that $y_i \neq f^*(x_i)$ for at most $2n\eta$ points w.h.p. Moreover, if we only need to guess the label of large groups of samples, say those containing at least $8n\eta$ points, then we are guaranteed that within each group at least $1/4$ of the sample points will have labels that agree with f^*. Therefore, after querying $\tilde{O}(\log(1/\delta))$ labeled examples from each group, the majority label will agree with f^*. If we use these labels in the second phase of the algorithm, we would be guaranteed that the error of our algorithm would be at most ϵ had the labels been produced by f^*, and therefore the error under the distribution P is at most $\eta + \epsilon$. The full version of the paper contains agnostic versions of Theorems 1, 4, and 5.

Similarly, modifying Algorithm 2 to require that the each cluster in the pruning have a majority label that accounts for at least $3/4$ of the cluster’s data can be used to extend the corresponding result to the agnostic setting.

8 Conclusion and Discussion

In this work we showed how to exploit the implicit geometric assumptions made by output code techniques under the well studied cases of one-vs-all and well separated code-words, and for a novel boundary features condition that captures the intuition that every binary learning task should be significant. We provide label-efficient learning algorithms for both the consistent and agnostic learning settings with guarantees when the data density has thick level sets or upper and lower bounds. In all cases, our algorithms show that the implicit assumptions of output code learning can be used to learn from very limited labeled data.

In this work we focused on linear output codes, which have been used in several practical works. For example Palatucci et al. (2009) use linear output codes to decode thoughts from fMRI data, Berger (1999) used them for text classification, and Crammer and Singer (2000) show that they perform well on MNIST and several UCI datasets. Many other works use non-linear output codes, and it is an interesting direction to extend our results to these cases.

The unlabeled sample complexity of our algorithms is exponential in the dimension because our algorithms require the samples to cover high-density regions. It is common for semi-supervised algorithms to require exponentially more unlabeled data than labeled, e.g. (Singh, Zhu, and Nowak 2008; Castelli and Cover 1995). Our results also show that the unlabeled sample complexity only scales exponentially with the intrinsic dimension, which may be significantly lower than the ambient dimension for real-world problems. An interesting direction for future work is to determine further conditions under which the unlabeled sample complexity can be drastically reduced.

Acknowledgments

This work was supported in part by NSF grants CCF-1422910, CCF-1535967, IIS-1618714, a Sloan Research Fellowship, a Microsoft Research Faculty Fellowship, and a Google Research Award.
References

