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Abstract

The wealth of structured (e.g. Wikidata) and unstructured
data about the world available today presents an incredible
opportunity for tomorrow’s Artificial Intelligence. So far, in-
tegration of these two different modalities is a difficult pro-
cess, involving many decisions concerning how best to repre-
sent the information so that it will be captured or useful, and
hand-labeling large amounts of data. DeepType overcomes
this challenge by explicitly integrating symbolic information
into the reasoning process of a neural network with a type
system. First we construct a type system, and second, we use
it to constrain the outputs of a neural network to respect the
symbolic structure. We achieve this by reformulating the de-
sign problem into a mixed integer problem: create a type sys-
tem and subsequently train a neural network with it. In this
reformulation discrete variables select which parent-child re-
lations from an ontology are types within the type system,
while continuous variables control a classifier fit to the type
system. The original problem cannot be solved exactly, so we
propose a 2-step algorithm: 1) heuristic search or stochastic
optimization over discrete variables that define a type system
informed by an Oracle and a Learnability heuristic, 2) gradi-
ent descent to fit classifier parameters. We apply DeepType to
the problem of Entity Linking on three standard datasets (i.e.
WikiDisamb30, CoNLL (YAGO), TAC KBP 2010) and find
that it outperforms all existing solutions by a wide margin,
including approaches that rely on a human-designed type sys-
tem or recent deep learning-based entity embeddings, while
explicitly using symbolic information lets it integrate new en-
tities without retraining.

1 Introduction

Online encyclopaedias, knowledge bases, ontologies (e.g.
Wikipedia, Wikidata, Wordnet), alongside image and video
datasets with their associated label and category hierarchies
(e.g. Imagenet (Deng et al. 2009), Youtube-8M (Abu-El-
Haija et al. 2016), Kinetics (Kay et al. 2017)) offer an un-
precedented opportunity for incorporating symbolic repre-
sentations within distributed and neural representations in
Artificial Intelligence systems. Several approaches exist for
integrating rich symbolic structures within the behavior of
neural networks: a label hierarchy aware loss function that
relies on the ultrametric tree distance between labels (e.g.
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it is worse to confuse sheepdogs and skyscrapers than it is
to confuse sheepdogs and poodles) (Wu, Tygert, and LeCun
2017), a loss function that trades off specificity for accu-
racy by incorporating hypo/hypernymy relations (Deng et
al. 2012), using NER types to constrain the behavior of an
Entity Linking system (Ling, Singh, and Weld 2015), or
more recently integrating explicit type constraints within a
decoder’s grammar for neural semantic parsing (Krishna-
murthy, Dasigi, and Gardner 2017). However, current ap-
proaches face several difficulties:

• Selection of the right symbolic information based on the
utility or information gain for a target task.

• Design of the representation for symbolic information (hi-
erarchy, grammar, constraints).

• Hand-labelling large amounts of data.

DeepType overcomes these difficulties by explicitly in-
tegrating symbolic information into the reasoning process
of a neural network with a type system that is automati-
cally designed without human effort for a target task. We
achieve this by reformulating the design problem into a
mixed integer problem: create a type system by selecting
roots and edges from an ontology that serve as types in a type
system, and subsequently train a neural network with it. The
original problem cannot be solved exactly, so we propose a
2-step algorithm:

1. heuristic search or stochastic optimization over the dis-
crete variable assignments controlling type system design,
using an Oracle and a Learnability heuristic to ensure that
design decisions will be easy to learn by a neural network,
and will provide improvements on the target task,

2. gradient descent to fit classifier parameters to predict the
behavior of the type system.

In order to validate the benefits of our approach, we fo-
cus on applying DeepType to Entity Linking (EL), the task
of resolving ambiguous mentions of entities to their referent
entities in a knowledge base (KB) (e.g. Wikipedia). Specif-
ically we compare our results to state of the art systems on
three standard datasets (WikiDisamb30, CoNLL (YAGO),
TAC KBP 2010). We verify whether our approach can work
in multiple languages, and whether optimization of the type
system for a particular language generalizes to other lan-
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guages1 by training our full system in a monolingual (En-
glish) and bilingual setup (English and French), and also
evaluate our Oracle (performance upper bound) on German
and Spanish test datasets. We compare stochastic optimiza-
tion and heuristic search to solve our mixed integer problem
by comparing the final performance of systems whose type
systems came from different search methodologies. We also
investigate whether symbolic information is captured by us-
ing DeepType as pretraining for Named Entity Recognition
(NER) on two standard datasets (i.e. CoNLL 2003 (Sang and
Meulder 2003), OntoNotes 5.0 (CoNLL 2012) (Pradhan et
al. 2012)).

Our key contributions in this work are as follows:

• A system for integrating symbolic knowledge into the rea-
soning process of a neural network through a type system,
to constrain the behavior to respect the desired symbolic
structure, and automatically design the type system with-
out human effort.

• An approach to EL that uses type constraints, reduces
disambiguation resolution complexity from O(N2) to
O(N), incorporates new entities into the system with-
out retraining, and outperforms all existing solutions by
a wide margin.

Moreover, we observe that disambiguation accuracy reaches
99.0% on CoNLL (YAGO) and 98.6% on TAC KBP 2010
when entity types are predicted by an Oracle, suggesting that
EL would be almost solved if we can improve type predic-
tion accuracy.

The rest of this paper is structured as follows. In Sec-
tion 2 we introduce EL and EL with Types, in Section 3
we describe DeepType for EL, In Section 4 we provide ex-
perimental results for DeepType applied to EL and evidence
of cross-lingual and cross-domain transfer of the represen-
tation learned by a DeepType system. In Section 5 we relate
our work to existing approaches. Conclusions and directions
for future work are given in Section 6.

2 Task

Before we define how DeepType can be used to constrain
the outputs of a neural network using a type system, we will
first define the goal task of Entity Linking.

Entity Linking The goal is to recover the ground truth en-
tities in a KB referred to in a document by locating mentions
(text spans), and for each mention properly disambiguating
the referent entity. Commonly, a lookup table that maps each
mention to a proposal set of entities for each mention m:
Em = {e1, . . . , en} (e.g. “Washington” could mean Wash-
ington, D.C. or George Washington). Disambiguation is
finding for each mention m the a ground truth entity eGT in
Em. Typically, disambiguation operates according to two cri-
teria: in a large corpus, how often does a mention point to an

1e.g. Do we overfit to a particular set of symbolic structures use-
ful only in English, or can we discover a knowledge representation
that works across languages?

entity, LinkCount(m, e), and how often does entity e1 co-
occur with entity e2, an O(N2) process, often named coher-
ence (Milne and Witten 2008; Ferragina and Scaiella 2010;
Yamada et al. 2016).

Entity Linking with Types In this work we extend the
EL task to associate with each entity a series of types (e.g.
Person, Place, etc.) that if known, would rule out invalid
answers, and therefore ease linking (e.g. the context now en-
ables types to disambiguate “Washington”). Knowledge of
the types T associated with a mention can also help prune
entities from the the proposal set, to produce a constrained
set: Em,T ⊆ Em. In a probabilistic setting it is also possible
to rank an entity e in document x according to its likelihood
under the type system prediction and under the entity model:

P(e|x) ∝ Ptype(types(e)|x) · Pentity(e|x, types(e)). (1)

In prior work, the 112 FIGER Types (Ling and Weld 2012)
were associated with entities to combine an NER tagger with
an EL system (Ling, Singh, and Weld 2015). In their work,
they found that regular NER types were unhelpful, while
finer grain FIGER types improved system performance.

3 DeepType for Entity Linking

DeepType is a strategy for integrating symbolic knowledge
into the reasoning process of a neural network through a type
system. When we apply this technique to EL, we constrain
the behavior of an entity prediction model to respect the
symbolic structure defined by types. As an example, when
we attempt to disambiguate “Jaguar” the benefits of this ap-
proach are apparent: our decision can be based on whether
the predicted type is Animal or Road Vehicle as shown visu-
ally in Figure 1.

In this section, we will first define key terminology, then
explain the model and its sub-components separately.

Terminology

Given some knowledge graph or feature set, a relation is
a set of inheritance rules that define membership or ex-
clusion from a particular group. For instance the relation
instance of(city) selects all children of the root city
connected by instance of as members of the group, de-
picted by outlined boxes in Figure 2.

In this work a type is a label defined by a relation (e.g.
IsHuman is the type applied to all children of Human con-
nected by instance of).

A Type Axis is a set of mutually exclusive types (e.g.
IsHuman ∧ IsPlant = {}).

A Type System is a grouping of type axes, A, along with a
type labelling function: {t1, . . . , tk} = TypeLabeler(e,A).
For instance a type system with two axes {IsA, Topic}
assigns to George Washington: {Person, Politics},
and to Washington, D.C.: {Place, Geography}).

Model

To construct an EL system that uses type constraints we re-
quire: a type system, the associated type classifier, and a
model for predicting and ranking entities given a mention.
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The prey saw a jaguar cross in the jungle. The man saw a Jaguar speed on the highway.
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Entity jaguar Jaguar jungle jungle jaguar Jaguar highway Highway
Type Animal Road vehicle Region Music Animal Road vehicle Physical Object Film

only link Prob. 0.29 0.60 0.35 0.17 0.29 0.60 0.85 0.04
Prob. w/. types 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

Figure 1: Example model output: “jaguar” refers to different entities depending on context. Predicting the type associated with
each word (e.g. animal, region, etc.) helps eliminate options that do not match, and recover the true entity. Bar charts give the
system’s belief over the type-axis “IsA”, and the table shows how types affects entity probabilities given by Wikipedia links.

Type relation root
Child entity, member

non-member entity
active edge

…

inactive edge

instance of city
Paris Fortaleza

Alhambra

instance of

Mona Lisa
located in instance of

subclass of human 
settlement

neighborhoodkibbutz

subclass of

Upper East Side
instance of

Figure 2: Defining group membership with a knowledge
graph relation: children of root (city) via edge (instance of).

Instead of assuming we receive a type system, classifier, en-
tity prediction model, we will instead create the type sys-
tem and its classifier starting from a given entity predic-
tion model and ontology with text snippets containing entity
mentions (e.g. Wikidata and Wikipedia). For simplicity we
use LinkCount(e,m) as our entity prediction model.

We restrict the types in our type systems to use a set of
parent-child relations over the ontology in Wikipedia and
Wikidata, where each type axis has a root node r and an
edge type g, that sets membership or exclusion from the axis
(e.g. r = human, e = instance of, splits entities into:
human vs. non-human2).

We then reformulate the problem into a mixed inte-
ger problem, where discrete variables control which roots
r1, . . . , rk and edge types g1, . . . , gk among all roots R and
edge types G will define type axes, while the continuous
variables θ parametrize a classifier fit to the type system.
Our goal in type system design is to select parent-child re-
lations that a classifier easily predicts, and where the types
improve disambiguation accuracy.

Objective

To formally define our mixed integer problem, let us
first denote A as the assignment for the discrete vari-
ables that define our type system (i.e. boolean variables
defining if a parent-child relation gets included in our

2Type “instance of:human” mimics the NER PER label.

type system), θ as the parameters for our entity predic-
tion model and type classifier, and Smodel(A, θ) as the
disambiguation accuracy given a test corpus containing
mentions M =

{
(m0, e

GT
0 , Em0

), . . . , (mn, e
GT
n , Emn

)
}

.
We now assume our model produces some score for
each proposed entity e given a mention m in a doc-
ument D, defined EntityScore(e,m,D,A, θ). The pre-
dicted entity for a given mention is thus: e∗ =
argmaxe∈Em

EntityScore(e,m,D,A, θ). If e∗ = eGT, the
mention is disambiguated. Our problem is thus defined as:

max
A

max
θ

Smodel(A, θ) =

∑
(m,eGT,Em)∈M

�eGT
(e∗)

|M | . (2)

This original formulation cannot be solved exactly3. To
make this problem tractable we propose a 2-step algorithm:

1. Discrete Optimization of Type System: Heuristic search
or stochastic optimization over the discrete variables of
the type system, A, informed by a Learnability heuristic
and an Oracle.

2. Type classifier: Gradient descent over continuous vari-
ables θ to fit type classifier and entity prediction model.
We will now explain in more detail discrete optimization

of a type system, our heuristics (Oracle and Learnability
heuristic), the type classifier, and inference in this model.

Discrete Optimization of a Type System

The original objective Smodel(A, θ) cannot be solved ex-
actly, thus we rely on heuristic search or stochastic opti-
mization to find suitable assignments for A. To avoid train-
ing an entire type classifier and entity prediction model for
each evaluation of the objective function, we instead use a
proxy objective J for the discrete optimization4. To ensure

3There are ∼ 22.4·10
7

choices if each Wikipedia article can be
a type within our type system.

4Training of the type classifier takes ∼3 days on a Titan X Pas-
cal, while our Oracle can run over the test set in 100ms.
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that maximizing J(A) also maximizes Smodel(A, θ), we in-
troduce a Learnability heuristic and an Oracle that quantify
the disambiguation power of a proposed type system, an es-
timate of how learnable the type axes in the selected solution
will be. We measure an upper bound for the disambiguation
power by measuring disambiguation accuracy Soracle for a
type classifier Oracle over a test corpus.

To ensure that the additional disambiguation power of a
solution A translates in practice we weigh by an estimate of
solution’s learnability Learnability(A) improvements be-
tween Soracle and the accuracy of a system that predicts only
according to the entity prediction model5, Sgreedy.

Selecting a large number of type axes will provide strong
disambiguation power, but may lead to degenerate solu-
tions that are harder to train, slow down inference, and lack
higher-level concepts that provide similar accuracy with less
axes. We prevent this by adding a per type axis penalty of λ.

Combining these three terms gives us the equation for J :

J(A) =(Soracle − Sgreedy) · Learnability(A)+

Sgreedy − |A| · λ. (3)

Oracle Our Oracle is a methodology for abstracting away
machine learning performance from the underlying repre-
sentational power of a type system A. It operates on a test
corpus with a set of mentions, entities, and proposal sets:
mi, e

GT
i , Emi

. The Oracle prunes each proposal set to only
contain entities whose types match those of eGT

i , yielding
Em,oracle. Types fully disambiguate when |Em,oracle| = 1,
otherwise we use the entity prediction model to select the
right entity in the remainder set Emi,oracle:

Oracle(m) = argmax
e∈Em,oracle

Pentity(e|m, types(x)). (4)

If Oracle(m) = eGT, the mention is disambiguated.
Oracle accuracy is denoted Soracle given a type sys-
tem over a test corpus containing mentions M ={
(m0, e

GT
0 , Em0), . . . , (mn, e

GT
n , Emn)

}
:

Soracle =

∑
(m,eGT,Em)∈M �eGT

(Oracle(m))

|M | . (5)

Learnability To ensure that disambiguation gains ob-
tained during the discrete optimization are available when
we train our type classifier, we want to ensure that the types
selected are easy to predict. The Learnability heuristic em-
pirically measures the average performance of classifiers at
predicting the presence of a type within some Learnability-
specific training set.

To efficiently estimate Learnability for a full type sys-
tem we make an independence assumption and model it as
the mean of the Learnability for each individual axis, ig-
noring positive or negative transfer effects between differ-
ent type axes. This assumption lets us parallelize training of
simpler classifiers for each type axis. We measure the area
under its receiver operating characteristics curve (AUC) for

5For an entity prediction model based only on link counts, this
means always picking the most linked entity.

a jaguar cross the Junglesawprey
Word embedding Fully-connected layer

concat

dropout

FC

Is Animal?

(a)

Stacked Bi-LSTM

dropout

…Word 1 Word n

FC FC…

softmax softmax

Type Axis 1 Type Axis k…

(b)

Figure 3: Text window classifier in (a) serves as type Learn-
ability estimator, while the network in (b) takes longer to
train, but discovers long-term dependencies to predict types
and jointly produces a distribution for multiple type axes.

each classifier and compute the type system’s learnability:
Learnability(A) =

∑
t∈A AUC(t)

|A| . We use a text window
classifier trained over windows of 10 words before and after
a mention. Words are represented with randomly initialized
word embeddings; the classifier is illustrated in Figure 3a.
AUC is averaged over 4 training runs for each type axis.

Type Classifier

After the discrete optimization has completed we now have
a type system A. We can now use this type system to label
data in multiple languages from text snippets associated with
the ontology6, and supervize a Type classifier.

The goal for this classifier is to discover long-term de-
pendencies in the input data that let it reliably predict types
across many contexts and languages. For this reason we se-
lect a bidirectional-LSTM (Lample et al. 2016) with word,
prefix, and suffix embeddings as done in (Andor et al. 2016).
Our network is shown pictorially in Figure 3b. Our clas-
sifier is trained to minimize the negative log likelihood of
the per-token types for each type axis in the document D
with L tokens: −∑k

i=1 logPi(ti,1, . . . , ti,L|D). When us-
ing Wikipedia as our source of text snippets our label super-
vision is partial7, so we make a conditional independence
assumption about our predictions and use Softmax as our
output activation: −∑k

i=1

∑L
j=1 logPi(ti,j |wj , D).

Inference

At inference-time we incorporate classifier belief into our
decision process by first running it over the full context
and obtaining a belief over each type axis for each in-
put word w0, . . . , wL. For each mention m covering words
wx, . . . , wy , we obtain the type conditional probability for
all type axes i: {Pi(·|wx, D), . . . ,Pi(·|wy, D)}. In multi-
word mentions we must combine beliefs over multiple to-
kens x . . . y: the product of the beliefs over the mention’s
tokens is correct but numerically unstable and slightly less

6Wikidata’s ontology has cross-links with Wikipedia, IMDB,
Discogs, MusicBrainz, and other encyclopaedias with snippets.

7We obtain type labels only on the intra-wiki link anchor text.
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performant than max-over-time8, which we denote for the
i-th type axis: Pi,∗(·|m,D).

The score se,m,D,A,θ = EntityScore(e,m,D,A, θ) of
an entity e given these conditional probability distributions
P1,∗(·|m,D), . . . ,Pk,∗(·|m,D), and the entities’ types in
each axis t1, . . . , tk can then be combined to rank entities
according to how predicted they were by both the entity pre-
diction model and the type system. The chosen entity e∗
for a mention m is chosen by taking the option that maxi-
mizes the score among the Em possible entities; the equa-
tion for scoring and e∗ is given below, with PLink(e|m) =

LinkCount(m,e)∑
j∈Em

LinkCount(m,j) , αi a per type axis smoothing param-
eter, β is a smoothing parameter over all types:

se,m,D,A,θ =PLink(e|m) ·
(
1− β + β ·{

k∏
i=1

(1− αi + αi · Pi,∗(ti|m,D))

})
.

(6)

4 Results

Type System Discovery

In the following experiments we evaluate the behavior
of different search methodologies for type system discov-
ery: which method best scales to large numbers of types,
achieves high accuracy on the target EL task, and whether
the choice of search impacts learnability by a classifier or
generalisability to held-out EL datasets.

For the following experiments we optimize DeepType’s
type system over a held-out set of 1000 randomly sam-
pled articles taken from the Feb. 2017 English Wikipedia
dump, with the Learnability heuristic text window classifiers
trained only on those articles. The type classifier is trained
jointly on English and French articles, totalling 800 million
tokens for training, 1 million tokens for validation, sampled
equally from either language.

We restrict roots R and edges G to the most common
1.5·105 entities that are entity parents through wikipedia
category or instance of edges, and eliminate type
axes where Learnability(·) is 0, leaving 53,626 type axes.

Human Type System Baseline To isolate discrete opti-
mization from system performance and gain perspective on
the difficulty and nature of the type system design we in-
corporate a human-designed type system. Human design-
ers have access to the full set of entities and relations
in Wikipedia and Wikidata, and compose different inheri-
tance rules through Boolean algebra to obtain higher level
concepts (e.g. woman = IsHuman ∧ IsFemale, or
animal = IsTaxon∧¬{IsHuman∨IsPlant}9). The
final human system uses 5 type axes10, and 1218 inheritance
rules.

8The choice of max-over-time is empirically motivated: we
compared product mean, min, max, and found that max was com-
parable to mean, and slightly better than the alternatives.

9Taxon is the general parent of living items in Wikidata.
10IsA, Topic, Location, Continent, and Time.

Search methodologies

Beam Search and Greedy selection We iteratively con-
struct a type system by choosing among all remaining type
axes and evaluating whether the inclusion of a new type axis
improves our objective: J(A ∪ {tj}) > J(A). We use a
beam size of b and stop the search when all solutions stop
growing.

Cross-Entropy Method (CEM) (Rubinstein 1999) is a
stochastic optimization procedure applicable to the selection
of types. We begin with a probability vector �P0 set to pstart,
and at each iteration we sample MCEM vectors �s from the
Bernoulli distribution given by �Pi, and measure each sam-
ple’s fitness with Eq. 3. The NCEM highest fitness elements
are our winning population St at iteration t. Our probabili-

ties are fit to St giving Pt+1 =
∑

�s∈St
�s

NCEM
. The optimization is

complete when the probability vector is binary.

Genetic Algorithm The best subset of type axes can
be found by representing type axes as genes carried by
Npopulation individuals in a population undergoing muta-
tions and crossovers (Harvey 2009) over G generations. We
select individuals using Eq. 3 as our fitness function.

Search Methodology Performance Impact To validate
that λ controls type system size, and find the best trade-
off between size and accuracy, we experiment with a range
of values and find that accuracy grows more slowly below
0.00007, while system size still increases.

From this point on we keep λ = 0.00007, and we com-
pare the number of iterations needed by different search
methods to converge, against two baselines: the empty set
and the mean performance of 100 randomly sampled sets of
128 types (Table 1a). We observe that the performance of
stochastic optimizers GA and CEM is similar to heuristic
search, but requires orders of magnitude less function eval-
uations.

Next, we compare the behavior of the different search
methods to a human designed system and state of the art ap-
proaches on three standard datasets (i.e. WIKI-DISAMB30
(WKD30) (Ferragina and Scaiella 2010)11, CoNLL(YAGO)
(Hoffart et al. 2011), and TAC KBP 2010 (Ji et al. 2010)),
along with test sets built by randomly sampling 1000 ar-
ticles from Wikipedia’s February 2017 dump in English,
French, German, and Spanish which were excluded from
training the classifiers. Table 1c has Oracle performance for
the different search methods on the test sets, where we re-
port disambiguation accuracy per annotation. A LinkCount
baseline is included that selects the mention’s most fre-
quently linked entity12. All search techniques’ Oracle ac-

11We apply the preprocessing and link pruning as (Ferragina and
Scaiella 2010) to ensure the comparison is fair.

12Note that LinkCount accuracy is stronger than the one found
in (Ferragina and Scaiella 2010) or (Milne and Witten 2008) be-
cause newer Wikipedia dumps improve link coverage and reduce
link distribution noisiness.
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Table 1: Method comparisons. Highest value in bold, excluding oracles.

(a) Type system discovery method comparison

Approach Evals Accuracy Items
BeamSearch 5.12 · 107 97.84 130
Greedy 6.40 · 106 97.83 130
GA 116, 000 96.959 128
CEM 43, 000 96.26 89
Random N/A 92.9± 0.28 128
No types 0 92.10 0

(b) NER F1 score comparison for DeepType pretraining vs. baselines.

Model CoNLL 2003 OntoNotes
Dev Test Dev Test

Bi-LSTM - 76.29 - 77.77(Chiu and Nichols 2015)
Bi-LSTM-CNN + emb + lex

94.31 91.62 84.57 86.28(Chiu and Nichols 2015)
Bi-LSTM (Ours) 89.49 83.40 82.75 81.03
Bi-LSTM-CNN (Ours) 90.54 84.74 83.17 82.35
Bi-LSTM-CNN (Ours) + types 93.54 88.67 85.11 83.12

(c) Entity Linking model Comparison. Significant improvements over prior work denoted by ∗ for p < 0.05, and ∗∗ for p < 0.01.

Model enwiki frwiki dewiki eswiki WKD30 CoNLL TAC 2010
M&W(Milne and Witten 2008) 84.6 - -
TagMe (Ferragina and Scaiella 2010) 83.224 80.711 90.9 - -
(Globerson et al. 2016) - 91.7 87.2
(Yamada et al. 2016) - 91.5 85.2
NTEE (Yamada et al. 2017) - - 87.7
LinkCount only 89.064∗∗ 92.013 92.013∗∗ 89.980 82.710 68.614 81.485

O
ur

s

manual 94.331∗∗ 92.967 91.888∗∗ 93.108∗∗ 90.743∗
manual (oracle) 97.734 98.026 98.632 98.178 95.872 98.217 98.601

greedy 93.725∗∗ 92.984 92.375∗∗ 94.151∗∗ 90.850∗
greedy (oracle) 98.002 97.222 97.915 98.246 97.293 98.982 98.278

CEM 93.707∗∗ 92.415 92.247∗∗ 93.962∗∗ 90.302∗
CEM (oracle) 97.500 96.648 97.480 97.599 96.481 99.005 96.767

GA 93.684∗∗ 92.027 92.062∗∗ 94.879∗∗ 90.312∗
GA (oracle) 97.297 96.783 97.408 97.609 96.268 98.461 96.663

GA (English only) 93.029∗∗ 91.743∗∗ 93.701∗∗ -

curacy significantly improve over LinkCount, and achieve
near perfect accuracy on all datasets (97-99%); furthermore
we notice that performance between the held-out Wikipedia
sets and standard datasets sets is similar, supporting the
claim that the discovered type systems generalize well. We
note that machine discovered type systems outperform hu-
man designed systems: CEM beats the human type sys-
tem on English Wikipedia, and all search method’s type
systems outperform human systems on WIKI-DISAMB30,
CoNLL(YAGO), and TAC KBP 2010.

Search Methodology Learnability Impact To under-
stand whether the type systems produced by different search
methods can be trained similarly well we compare the type
system built by GA, CEM, greedy, and the one constructed
manually. EL Disambiguation accuracy is shown in Table
1c, where we compare with recent deep-learning based ap-
proaches (Globerson et al. 2016), or recent work by Ya-
mada et al. for embedding word and entities (Yamada et
al. 2016), or documents and entities (Yamada et al. 2017),
along with count and coherence based techniques Tagme
(Ferragina and Scaiella 2010) and Milne & Witten (Milne
and Witten 2008). To obtain Tagme’s Feb. 2017 Wikipedia

accuracy we query the public web API13 available in Ger-
man and English, while other methods can be compared on
CoNLL(YAGO) and TAC KBP 2010. Models trained on a
human type system outperform all previous approaches to
entity linking, while type systems discovered by machines
lead to even higher performance on all datasets except En-
glish Wikipedia.

Cross-Lingual Transfer

Type systems are defined over Wikidata/Wikipedia, a multi-
lingual knowledge base/encyclopaedia, thus type axes are
language independent and can produce cross-lingual super-
vision. To verify whether this cross-lingual ability is use-
ful we train a type system on an English dataset and ver-
ify whether it can successfully supervize French data. We
also measure using the Oracle (performance upper bound)
whether the type system is useful in Spanish or German. Or-
acle performance across multiple languages does not appear
to degrade when transferring to other languages (Table 1c).
We also notice that training in French with an English type
system still yields improvements over LinkCount for CEM,
greedy, and human systems.

13https://tagme.d4science.org/tagme/
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Because multi-lingual training might oversubscribe the
model, we verified if monolingual would outperform bilin-
gual training: we compare GA in English + French with only
English (last row of Table 1c). Bilingual training does not
appear to hurt, and might in fact be helpful.

We follow-up by inspecting whether the bilingual word
vector space led to shared representations: common nouns
have their English-French translation close-by, while proper
nouns do not (French and US politicians cluster separately).

Named Entity Recognition Transfer

The goal of our NER experiment is to verify whether Deep-
Type produces a type sensitive language representation use-
ful for transfer to other downstream tasks. To measure this
we pre-train a type classifier with a character-CNN and word
embeddings as inputs, following (Kim et al. 2015), and re-
place the output layer with a linear-chain CRF (Lample et al.
2016) to fine-tune to NER data. Our model’s F1 scores when
transferring to the CoNLL 2003 NER task and OntoNotes
5.0 (CoNLL 2012) split are given in Table 1b. We com-
pare with two baselines that share the architecture but are
not pre-trained, along with the current state of the art (Chiu
and Nichols 2015).

We see positive transfer on Ontonotes and CoNLL: our
baseline Bi-LSTM strongly outperforms (Chiu and Nichols
2015)’s baseline, while pre-training gives an additional 3-4
F1 points, with our best model outperforming the state of
the art on the OntoNotes development split. While our base-
line LSTM-CRF performs better than in the literature, our
strongest baseline (CNN+LSTM+CRF) does not match the
state of the art with a lexicon. We find that DeepType al-
ways improves over baselines and partially recovers lexicon
performance gains, but does not fully replace lexicons.

5 Related Work

Neural Network Reasoning with Symbolic structures
Several approaches exist for incorporating symbolic struc-
tures into the reasoning process of a neural network by de-
signing a loss function that is defined with a label hierar-
chy. In particular the work of (Deng et al. 2012) trades off
specificity for accuracy, by leveraging the hyper/hyponymy
relation to make a model aware of different granularity lev-
els. Our work differs from this approach in that we design
our type system within an ontology to meet specific accu-
racy goals, while they make the accuracy/specificity tradeoff
at training time, with a fixed structure. More recently (Wu,
Tygert, and LeCun 2017) use a hierarchical loss to increase
the penalty for distant branches of a label hierarchy using the
ultrametric tree distance. We also aim to capture the most
important aspects of the symbolic structure and shape our
loss function accordingly, however our loss shaping is a re-
sult of discrete optimization and incorporates a learnability
heuristic to choose aspects that can easily be acquired.

A different direction for integrating structure stems from
constraining model outputs, or enforcing a grammar. In the
work of (Ling, Singh, and Weld 2015), the authors use
NER and FIGER types to ensure that an EL model follows
the constraints given by types. We also use a type system

and constrain our model’s output, however our type system
is task-specific and designed by a machine with a disam-
biguation accuracy objective, and unlike the authors we find
that types improve accuracy. The work of (Krishnamurthy,
Dasigi, and Gardner 2017) uses a type-aware grammar to
constrain the decoding of a neural semantic parser. Our work
makes use of type constraints during decoding, however the
grammar and types in their system require human engineer-
ing to fit each individual semantic parsing task, while our
type systems are based on online encyclopaedias and on-
tologies, with applications beyond EL.

Neural Entity Linking Current approaches to entity link-
ing make extensive use of deep neural networks, distributed
representations. In (Globerson et al. 2016) a neural net-
work uses attention to focus on contextual entities to dis-
ambiguate. While our work does not make use of attention,
RNNs allow context information to affect disambiguation
decisions. In the work of (Yamada et al. 2016) and (Yamada
et al. 2017), the authors adopt a distributed representation
of context which either models words and entities, or doc-
uments and entities such that distances between vectors in-
forms disambiguation. We also rely on word and document
vectors produced by RNNs, however entities are not explic-
itly represented in our neural network, and we use context to
predict entity types, thereby allowing us to incorporate new
entities without retraining.

6 Conclusion

In this work we introduce DeepType, a method for integrat-
ing symbolic knowledge into the reasoning process of a neu-
ral network. We’ve proposed a mixed integer reformulation
for jointly designing type systems and training a classifier
for a target task, and empirically validated that when this
technique is applied to EL it is effective at integrating sym-
bolic information in the neural network reasoning process.
When pre-training with DeepType for NER, we observe im-
proved performance over baselines and a new state of the art
on the OntoNotes dev set, suggesting there is cross-domain
transfer: symbolic information is incorporated in the neural
network’s distributed representation. Furthermore we find
that type systems designed by machines outperform those
designed by humans on three benchmark datasets, which
is attributable to incorporating learnability and target task
performance goals within the design process. Our approach
naturally enables multilingual training, and our experiments
show that bilingual training improves over monolingual, and
type systems optimized for English operate at similar accu-
racies in French, German, and Spanish, supporting the claim
that the type system optimization leads to the discovery of
high level cross-lingual concepts useful for knowledge rep-
resentation. We compare different search techniques, and
observe that stochastic optimization has comparable perfor-
mance to heuristic search, but with orders of magnitude less
objective function evaluations.

The main contributions of this work are a joint formu-
lation for designing and integrating symbolic information
into neural networks, that enable us to constrain the out-
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puts to obey symbolic structure, and an approach to EL that
uses type constraints. Our approach reduces EL resolution
complexity from O(N2) to O(N), while allowing new en-
tities to be incorporated without retraining, and we find on
three standard datasets (WikiDisamb30, CoNLL (YAGO),
TAC KBP 2010) that our approach outperforms all existing
solutions by a wide margin, including approaches that rely
on a human-designed type system (Ling, Singh, and Weld
2015) and the more recent work by Yamada et al. for embed-
ding words and entities (Yamada et al. 2016), or document
and entities (Yamada et al. 2017). As a result of our experi-
ments, we observe that disambiguation accuracy using Ora-
cles reaches 99.0% on CoNLL (YAGO) and 98.6% on TAC
KBP 2010, suggesting that EL would be almost solved if we
can close the gap between type classifiers and the Oracle.

The results presented in this work suggest many direc-
tions for future research: we may test how DeepType can
be applied to other problems where incorporating symbolic
structure is beneficial, whether making type system design
more expressive by allowing hierarchies can help close the
gap between model and Oracle accuracy, and seeing if addi-
tional gains can be obtained by relaxing the classifier’s con-
ditional independence assumption.
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