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Abstract

Numerous urban planners advocate for differentiated transit
pricing to improve both ridership and service equity. Several
metropolitan cities are considering switching to a more “fair
fare system”, where passengers pay according to the distance
travelled, rather than a flat fare or zone boundary scheme that
discriminates against various marginalized groups.
In this paper, we present a two-part optimal pricing formula
for switching to distance-based transit fares: the first formula
maximizes forecasted revenue given a target ridership, and
the second formula maximizes forecasted ridership given a
target revenue. Both formulas hold for all price elasticities.
Our theory has been successfully tested on the SkyTrain
mass transit network in Metro Vancouver, British Columbia,
with over 400,000 daily passengers. This research has served
Metro Vancouver’s transportation authority as they consider
changing their fare structure for the first time in over 30 years.

Introduction

Nearly every metropolitan city in the world has a mass tran-
sit system, to reduce car congestion and improve environ-
mental sustainability. In the United States, over ten billion
trips are made each year on buses and trains, a 37% increase
in public transit ridership over the past two decades, nearly
double the population growth rate during this same period
(American Public Transportation Association 2017).

There are several ways to charge passengers for public
transit. The two simplest systems are a flat fare that charges
a fixed amount regardless of distance travelled, and a zone-
based fare scheme that is common to many cities, including
the Canadian metropolitan region of Vancouver.
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Metro Vancouver’s SkyTrain network is divided into three
zones, where passengers pay either f1 = $2.20, f2 = $3.25,
or f3 = $4.30, depending on the number of zones they
pass through. While the zone-based system is simple to un-
derstand, it punishes passengers travelling short distances
over an arbitrary zone boundary and benefits passengers who
travel long distances within a single zone. This is clear from
the given SkyTrain map, where various one-station trips cost
f2 while one 17-station trip costs only f1.

TransLink, the transit authority of Metro Vancouver, im-
plemented the three-zone fare structure back in 1984, when
the region’s public transit was based entirely on buses. In
2016, TransLink decided to launch its first-ever transit fare
review, to explore other possibilities for pricing transit given
the major changes in travel patterns due to the growth of the
SkyTrain rapid transit network over the past three decades.

In Phase 1 of the review, TransLink surveyed over 28,000
people, finding that 64% disagreed that “the current zone-
based fare structure works well”, compared to only 19% who
agreed with the statement. Among all priorities identified
by the respondents, the most important was to “make fares
lower for shorter-distance trips” (TransLink 2016).

In Phase 2, TransLink surveyed nearly 13,000 residents,
finding that the majority preferred distance-based fares for
the SkyTrain (TransLink 2017). In a distance-based model,
there are n different “tiers”, with a fare of Xi for travelling
a distance of i units. Note that the units can be measured in
kilometres, miles, or even the number of passed stations.

Distance-based fares have long been advocated by urban
planners and transit scholars, as this paradigm charges pas-
sengers for the actual costs they impose on the transit system
(Cervero 1981), and benefit low-income and elderly popula-
tions (Farber et al. 2014). Furthermore, distance-based fares
eliminate the inherent unfairness of zone boundaries, and in-
centivize people to take short trips with a cheap public transit
option, rather than by car or taxi.

As a result, public transit authorities in several large cities,
including Edmonton and Toronto, are currently considering
a switch to distance-based transit fares. The challenge is
determining how to do this, to optimally convert m differ-
ent zone fares (note that flat fares are just zone fares with
m = 1) to n distance-based tiers, to maximize forecasted
ridership and revenue. We answer this question by formulat-
ing it as an AI problem and finding an exact solution.
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Price elasticity measures the extent to which consumption
patterns change in response to a change in price. In the con-
text of public transit, the price elasticity is−k = ΔR

ΔF , where
ΔR is the change in ridership and ΔF is the change in fares.
For example, if a 20% fare increase causes a 4% decrease in
ridership, then k = 0.2. Transit policy analysts have found
that k is approximately 0.2 in North America (Tawfik 2014).

In the next section, we present a brief literature review,
after which we define the specific problem that falls under
the broad AI field of constraint optimization. We present
our main theorem, an optimal pricing formula for converting
zone fares to distance-based fares that holds for any price
elasticity −k. Our two-part result is an application of the
Cauchy-Schwarz Inequality, where we (a) maximize fore-
casted revenue given a target ridership, and (b) maximize
forecasted ridership given a target revenue.

We then apply the theory to the TransLink system with
over 400,000 daily passengers, and explain how we created
a simple Java program that enables the transit authority to
rapidly generate forecasted ridership and revenue numbers
for various distance-based fare scenarios. We present the re-
sults of our analysis on a month’s worth of TransLink pas-
senger data, present our proposed recommendation for five
tiers with the optimal fare prices, and conclude the paper
with some avenues for future research.

Background and Related Work
Transit policy researchers use modelling and simulations to
forecast ridership and revenue under various scenarios; for
example, a recent thesis (Tawfik 2014) calculated the aver-
age per-trip SkyTrain fare across various distance intervals
to conclude that switching to distance-based fares has the
potential to increase TransLink’s ridership and revenue.

Several mathematicians have explored how to calculate
optimal distance-based transit fares: one used a hybrid ar-
tificial bee colony algorithm (Huang et al. 2016), and an-
other used a discrete choice model (Borndorfer, Karbsteina,
and Pfetsch 2012) that was then applied to the transit sys-
tem in Potsdam, Germany. But the most promising approach
was a quadratic programming model (Daskin, Schofer, and
Haghani 1988) as it took elasticity into account, maximizing
the total revenue (a quadratic function) subject to ridership
constraints. This paper solved the quadratic program (QP)
using the Frank-Wolfe algorithm, taking the weighted aver-
age of numerous linear programming (LP) solutions.

Quadratic programming has numerous applications in
Artificial Intelligence, as illustrated by recently-published
AAAI papers on binary optimization problems (Yuan and
Ghanem 2017), multi-label prediction (Han et al. 2010), and
the calibration of scores in scientific peer review (Roos,
Rothe, and Scheuermann 2011). AI researchers have also
developed powerful techniques to compress convex QPs to
make them more compact, which then makes them more ef-
ficient to solve (Mladenov, Kleinhans, and Kersting 2017).

In this paper, we solve this real-life transit policy problem
using quadratic programming. Our optimal pricing formula
is extremely versatile in that it is both fast and exact: unlike
other QPs that are solved using multi-step algorithms, ours
is a direct solution, using the Cauchy-Schwarz inequality.

An Example Problem
Consider the following simplified problem, with six stations
equally spaced on a straight line, with labels from A to F.
Suppose there is a “boundary” in the middle so that passen-
gers are charged a two-zone fare for travelling from C to D,
but only a one-zone fare for the longer trip from D to F.

Suppose f1 and f2 are the prices of a one-zone and two-
zone fare, respectively. In this example problem, we will as-
sume f1 = 4 and f2 = 5, with the units in dollars.

Let (X1, X2, X3, X4, X5) be the ordered 5-tuple corre-
sponding to a distance-based fare model, where Xi is the
cost of travelling i stations in either direction.

For each 1 ≤ i ≤ 5 and 1 ≤ j ≤ 2, let ri,j be the number
of passengers who currently pay fj for travelling in j zones,
and would pay Xi in a distance-based system for travelling
i stations. From the above diagram, we see that ri,1 = 0 for
3 ≤ i ≤ 5. We will assume that the ri,j values are:

i 1 1 2 2 3 4 5
j 1 2 1 2 2 2 2
ri,j 300 100 200 100 400 300 200
fj 4 5 4 5 5 5 5

Based on the above assumptions, the total ridership and

revenue are
5∑

i=1

2∑
j=1

ri,j = 1600 and
5∑

i=1

2∑
j=1

ri,jfj = 7500.

Let −k be the price elasticity, with k > 0. Thus, if we
decrease the fare of the C to D trip by p%, then we would
forecast a pk% increase of passengers travelling from C to
D. In this problem, we will assume that k = 0.2.

Suppose we change from zone fares to the distance-based
5-tuple (X1, X2, X3, X4, X5). For each 1 ≤ i ≤ 5, we can
predict the number of passengers who would travel distance
i, as a function of the elasticity −k, and use this to forecast
the ridership and revenue under this new pricing scheme.

If (X1, X2, X3, X4, X5) = (3.5, 4, 4.5, 5, 5.5), we can
show that the total ridership increases to 1622, but the to-
tal revenue falls to 7077. In other words, for a 1% increase
in ridership, we have created a 6% decrease in revenue.

The challenge is to properly set each Xi, knowing that
a fare increase will lead to a ridership decrease, and vice-
versa. A natural approach is to fix one variable and maxi-
mize the other. Specifically, we can either (a) maximize the
forecasted revenue given a fixed target ridership, or (b) max-
imize the forecasted ridership given a fixed target revenue.

The main theorem of this paper, presented in the follow-
ing section, solves both parts using the Cauchy-Schwarz In-
equality, and finds an explicit formula for each Xi. We then
illustrate both parts of our optimal pricing formula on our
example problem, and apply this theory to propose an opti-
mal distance-based fare system for the SkyTrain network.
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Main Theorem

Let f1, f2, . . . , fm be the current fares of the m different
zones, and let X1, X2, . . . , Xn be the proposed distance-
based fares, for each of the n possible distance options. (In
this theorem, the lower case variables represent the known
constants, while the upper case variables represent the un-
knowns that we are trying to determine.)

Let −k be the price elasticity, and let ri,j be the number
of riders who currently pay fj for travelling across j zones
and would pay Xi by travelling a distance of i units.

Define the following constants:

zi =
m∑
j=1

ri,j , ci =
m∑
j=1

ri,j
fj

, z̃ =
n∑

i=1

zi, c̃ =
n∑

i=1

ci.

(a) Let rid be the target ridership. Then for each 1 ≤ i ≤ n,
the optimal fare price Xi that maximizes total revenue is

Xi =

(
1 + k

2k

)
zi
ci
−
(
rid

c̃k
− 1 + k

2c̃k
· z̃

)

(b) Let rev be the target revenue. Then for each 1 ≤ i ≤ n,
the optimal fare price Xi that maximizes total ridership is

Xi =

(
1 + k

2k

)
zi
ci
−
√√√√−rev

c̃k
+

(1 + k)2

4c̃k2

n∑
i=1

z2i
ci

Proof of the Main Theorem

For each 1 ≤ i ≤ n, let Yi be the forecasted ridership for a
commute of distance i. By the definition of price elasticity,

Yi =
m∑
j=1

ri,j

(
1− k · Xi − fj

fj

)
= (1 + k)zi − kXici.

Thus, the total forecasted ridership and revenue, over all
n distances, are

∑n
i=1 Yi and

∑n
i=1 XiYi, respectively. Note

that ridership is a linear function of the Xi’s, while the rev-
enue function is a quadratic function of the Xi’s.

Note that z̃ =
∑n

i=1 zi =
∑n

i=1

∑m
j=1 ri,j is simply

the total ridership under the existing zone-based fare system.

Let Vi =
1 + k

2k
· zi
ci
−Xi for each 1 ≤ i ≤ n.

Then, the forecasted ridership function equals
n∑

i=1

Yi =

n∑
i=1

((1 + k)zi − kXici) =
(1 + k)z̃

2
+ k

n∑
i=1

ciVi

Similarly, the forecasted revenue function equals
n∑

i=1

XiYi =

n∑
i=1

(Xizi(1 + k)− k · ciX2
i )

=

n∑
i=1

(
−kci ·

(
1 + k

2k
· zi
ci

−Xi

)2

+
(1 + k)2

4k
· z

2
i

ci

)

= −k ·
n∑

i=1

ciV
2
i +

(1 + k)2

4k

(
n∑

i=1

z2i
ci

)

Because k is a positive constant, as are all the ci’s and
zi’s, our forecasted ridership is maximized when

∑n
i=1 ciVi

is maximized. Conversely, our forecasted revenue is maxi-
mized when

∑n
i=1 ciV

2
i is minimized.

By the Cauchy-Schwarz Inequality,(
n∑

i=1

ciV
2
i

)(
n∑

i=1

ci

)
≥

(
n∑

i=1

ciVi

)2

,

with equality occurring if and only if V1 = . . . = Vn.
In part (a), we have a target ridership of

rid =
n∑

i=1

Yi =
(1 + k)z̃

2
+ k

n∑
i=1

ciVi.

Since
∑n

i=1 ciVi is a constant, the Cauchy-Schwarz In-
equality tells us that

∑n
i=1 ciV

2
i is minimized when each

Vi = V for some real number V ≥ 0. Therefore, our fore-
casted revenue is maximized when V satisfies

rid =
(1 + k)z̃

2
+ k

n∑
i=1

ciV

⇒ V =
rid

c̃k
− 1 + k

2c̃k
· z̃

For each 1 ≤ i ≤ n, we defined Vi =
1 + k

2k
· zi
ci
−Xi.

And so, if rid is the target ridership, we conclude that the
revenue-maximizing distance-based fare Xi is

Xi =

(
1 + k

2k

)
zi
ci
−
(
rid

c̃k
− 1 + k

2c̃k
· z̃

)

In part (b), we have a target revenue of

rev =
n∑

i=1

XiYi = −k ·
n∑

i=1

ciV
2
i +

(1 + k)2

4k

(
n∑

i=1

z2i
ci

)

Since
∑n

i=1 ciV
2
i is a constant, the Cauchy-Schwarz In-

equality tells us that
∑n

i=1 ciVi is maximized when each
Vi = V for some real number V ≥ 0. Therefore, our fore-
casted ridership is maximized when V satisfies

rev = −k ·
n∑

i=1

ciV
2 +

(1 + k)2

4k

(
n∑

i=1

z2i
ci

)

⇒ V =

√√√√−rev

c̃k
+

(1 + k)2

4c̃k2

n∑
i=1

z2i
ci

For each 1 ≤ i ≤ n, we defined Vi =
1 + k

2k
· zi
ci
−Xi.

And so, if rev is the target revenue, we conclude that the
ridership-maximizing distance-based fare Xi is

Xi =

(
1 + k

2k

)
zi
ci
−
√√√√−rev

c̃k
+

(1 + k)2

4c̃k2

n∑
i=1

z2i
ci
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Illustration on our Example Problem

We apply our Main Theorem to our example problem. We
have (z1, z2, z3, z4, z5) = (400, 300, 400, 300, 200) and
(c1, c2, c3, c4, c5) = (95, 70, 80, 60, 40). Our zone fare rid-
ership and revenue were 1600 and 7500, respectively.

Suppose rid = 1600, i.e., we don’t want our ridership
to decrease by switching to a distance-based fare system.
Then, for any price elasticity −k, we can determine our set
of revenue-maximizing distance-based fares using part (a)
of our Main Theorem:

X1 =
40

1311

(
145− 7

k

)
, X2 =

5

483

(
431− 17

k

)

X3 = X4 = X5 =
5

138

(
133 +

5

k

)

If k = 0.2, then our optimal fares are

(X1, X2, X3, X4, X5) = (3.36, 3.59, 5.72, 5.72, 5.72)

We can quickly calculate that (Y1, Y2, Y3, Y4, Y5) =
(416.2, 309.9, 388.4, 291.3, 194.2), which implies that the
ridership indeed stays constant at 1600, and the forecasted
revenue becomes 7510, a slight increase from the zone-
based system.

Of course, our Main Theorem applies for all values of rid,
even numbers that might be impractical to attain.

For example, if we insist on a ten percent increase in rid-
ership, to rid = 1760, then we get (X1, X2, X3, X4, X5) =
(1.04, 1.26, 3.41, 3.41, 3.41), i.e., all fares going down sig-
nificantly to increase passengers. Predictably, this leads to a
massive drop in revenue, from 7500 down to 4170.

Similarly, if we allow for a ten percent decrease in rider-
ship, to rid = 1440, then we get (X1, X2, X3, X4, X5) =
(5.68, 5.90, 8.04, 8.04, 8.04), i.e., all fares going up signif-
icantly. Predictably, this leads to a massive increase in rev-
enue, from 7500 up to 10107.

Suppose rev = 7500, i.e., we don’t want our revenue
to decrease by switching to a distance-based fare system.
Then, for any price elasticity −k, we can determine our set
of ridership-maximizing distance-based fares using part (b)
of our Main Theorem. For example, we have:

X1 =
40(k + 1)

19k
−
√

25

9177

(
1987

k2
− 4006

k
+ 1987

)

If k = 0.2, then our optimal fares are

(X1, X2, X3, X4, X5) = (3.35, 3.57, 5.71, 5.71, 5.71)

We can quickly calculate that (Y1, Y2, Y3, Y4, Y5) =
(416.4, 310.0, 388.5, 291.4, 194.3), which implies that the
revenue indeed stays constant at 7500, and the forecasted
ridership becomes 1600.5, a slight increase from the zone-
based system.

This formula also explains when a target is impossible to
attain. For example, if we set rev = 15000 or rid = 3200,
then our Xi variables are no longer positive reals, and so we
know that no distance-based model can double the revenue,
or double the ridership, with an elasticity of −0.2.

Since Xi is the optimal price of travelling i stops, we
clearly need to have X1 ≤ X2 ≤ . . . ≤ Xn, in order for the
result to make sense in practice. Unfortunately, depending
on the ridership numbers ri,j , it is possible for this mono-
tonicity condition to fail. Recall that each Xi =

1+k
2k · zici −V ,

for some constant V . Thus, to check whether Xi ≤ Xj , it
suffices to verify that zi

ci
≤ zj

cj
.

In our six-station example problem, it is straightforward
to prove that X1 ≤ X2 if and only if r1,2 · r2,1 ≤ r1,1 · r2,2.
Thus, when this inequality is violated, our Xi values will
not be monotonic. For example, if we change r1,2 from
100 to 200, then we’ll see that (X1, X2, X3, X4, X5) =
(3.73, 3.54, 5.68, 5.68, 5.68), i.e., X1 > X2.

When monotonicity is violated, a simple solution is to
bundle fares into tiers. This is a practical solution that yields
a result that is close to the optimal fares that maximize rider-
ship or revenue. In the above scenario, we could set two fare
“tiers”, where one tier is travelling 2 or fewer stops, and the
second tier is travelling 3 or more stops. The first fare tier is
set at X1+X2

2 and the second fare tier is set at X3+X4+X5

3 .
It is not a coincidence that X3 = X4 = X5 in all of

our scenarios. This is because all trips requiring 3 or more
steps requires us to cross the “boundary” from C to D, and
is therefore charged a two-zone fare. Thus, r3,1 = r4,1 =

r5,1 = 0, which implies that zi
ci

= ri,2 · f2
ri,2

= f2, for all
3 ≤ i ≤ 5. By our Main Theorem, this implies that our
optimal price must satisfy X3 = X4 = X5 = 1+k

2k · f2 − V .
We will see a similar result in our TransLink data, where n
different distance options collapse to a smaller number.

In our example problem, our optimal prices achieved a
result that were better than the zone fare prices: by fixing
ridership as rid = 1600, we found Xi values that increased
revenue, and by fixing revenue at rev = 7500, we found Xi

values that increased ridership. This is usually not the case.
To illustrate, consider the scenario where each of our

seven ri,j values is set at 100. Then our zone fare rider-
ship and revenue are 700 and 3300, respectively. By setting
rid = 700, we get a distance-based forecasted revenue of
3287 < 3300, and by setting rev = 3300, we get a distance-
based forecasted ridership of 699 < 700.

There is a simple explanation for this. In the first scenario,
only 100

1600 = 1
16 of passengers are overpaying, paying two

zones to travel one station. (This is the commute from C to
D in our six-station network.) But in the second scenario,
this fraction rises to 100

700 = 1
7 . These passengers are the ben-

eficiaries of switching to a distance-based system.
By the definition of price elasticity, if these r passen-

gers have their fare f drop by p%, then the revenue gen-
erated from the commute from C to D decreases from rf

to rf
(
1 + pk

100

) (
1− p

100

)
. If p = 10 and k = 0.2, then

ridership increases 2% while revenue falls by 8.2%.
If many passengers are currently overpaying in a zone-

based system, the percentage of lost revenue will exceed the
percentage of gained ridership; thus, despite its increased
fairness, switching to a distance-based system may yield re-
sults that are just slightly worse than the zone fare prices. As
we see in the next section, this is the case for TransLink.
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Application to SkyTrain Passenger Data

The Metro Vancouver SkyTrain system consists of 53 sta-
tions and three fare zones, with each pair of stations sepa-
rated by a geodesic distance of at most 22 kilometres. To get
on the SkyTrain, passengers require a Compass Card, a con-
tactless smart card that enables TransLink to track exactly
where a passenger is entering and exiting the network.

This analysis was conducted on thirty days of Compass
Card data from September 2016, with approximately 13 mil-
lion total boardings. There were 46 stations considered in
our analysis, excluding the three airport stations (which have
an additional fare surcharge) and the stations on the brand-
new Evergreen Line (which opened in December 2016).

The SkyTrain zone-based fares are f1 = 2.20, f2 = 3.25,
and f3 = 4.30. As seen below, the zone-based system bene-
fits some passengers at the expense of others: while 7% pay
f1 for a trip longer than 7km, 16% + 1% = 17% of passen-
gers pay either f2 or f3 for a trip shorter than 7 km.

TransLink provided us with an Excel sheet containing
three 46× 46 matrices. In these three matrices, each (X,Y )
entry corresponded to (i) the number of total trips from X
to Y , (ii) the geodesic distance from X to Y , and (iii) the
number of fare zones in a commute from X to Y .

We created a Java program that enables the user to in-
put the price elasticity −k, the number of distance tiers n,
as well as the actual ranges for each tier. For example, if
n = 10, we can set our ten distance tier prices to be X1

for travelling between 0 to 2.2 kilometres, X2 for 2.2 to 4.4
kilometres, all the way up to X10 for 19.8 to 22.0 kilometres.

From this input data, we read in our three Excel sheets
to calculate ri,j for each 1 ≤ i ≤ n and 1 ≤ j ≤ 3. By
definition, the sum of the ri,j coefficients must be approxi-
mately 13,000,000. Finally, we ask the user to indicate a tar-
get value for either ridership or revenue. Once the variable’s
target is entered, the Java program uses the Main Theorem
to determine the optimal fare prices (X1, X2, . . . , Xn) that
maximizes the other variable.

The first step of our analysis is to determine n, the ap-
propriate number of distance tiers. We first consider the case
where the n tiers are equally spread out, each with a range
of 22

n kilometres. Assuming an elasticity of k = −0.2 and a
non-changing ridership of rid ∼ 13, 000, 000, we apply the
Main Theorem to determine the prices (X1, X2, . . . , Xn)
that maximize revenue given the fixed ridership.

All scenarios lead to a net revenue loss, but the case n = 5
is optimal, leading to a net loss of 0.25%. As mentioned
previously, this revenue loss can be explained by the much
larger percentage of passengers who are overpaying in the
zone-based system (17%), as compared to those who are
underpaying (7%). For this case, the optimal fare prices are
(X1, X2, X3, X4, X5) = (1.70, 2.10, 4.09, 4.48, 7.15).

The high X5 = 7.15 fare arises because of the small num-
ber of passengers making trips that are between 17.6 and
22.0 kilometres, and thus this fare can be raised for these
longer journeys without losing as many passengers. This
pricing scheme leads to an overall average fare decrease of
2.35%, with over 70% seeing their SkyTrain fares go down
by switching to five equally-spaced distance tiers.

Given that X5 = 7.15 is significantly higher than the 3-
zone fare of f3 = 4.20, it is possible to set a cap on the
maximum distance-based fare to ensure that the final pol-
icy is “politically pragmatic”. For example, if we were to set
X5 = 6.00 and hold ridership constant, then the optimal fare
is (X1, X2, X3, X4, X5) = (1.74, 2.14, 4.18, 4.58, 6.00),
which leads to a 0.46% reduction in revenue.

In the above scenarios, we assumed the five distance tiers
were equal in range. However, our Java program is more
versatile, and enables the user to specify any set of ranges
for any number of tiers. For example, consider the n = 5
case where the five tiers have the following distance ranges:

Tier Min (km) Max (km)
Tier 1 0.0 1.5
Tier 2 1.5 4.5
Tier 3 4.5 9.0
Tier 4 9.0 15.0
Tier 5 15.0 22.0

This choice of distance ranges results in the optimal prices
of (X1, X2, X3, X4, X5) = (1.37, 1.97, 2.06, 4.17, 5.81),
which yields a 0.63% reduction in revenue. In this proposal,
nearly 70% of passengers would pay X1 or X2, which is less
than the one-zone fare f1 = 2.20.

Given that this is a more balanced distribution of passen-
gers paying each of the five fares, this proposal might be
more practical to implement, though it would lead to lower
forecasted revenue as compared to the other fare prices.

The natural solution is to round up each Xi to the near-
est quarter, which then creates a slight increase in fore-
casted revenue, while creating a slight decrease in forecasted
ridership. In this case, we have (X1, X2, X3, X4, X5) =
(1.50, 2.00, 2.25, 4.25, 6.00).

This final selection of distance-based tiers, with nearly-
optimal prices, is our recommended proposal to TransLink.
This is our recommendation because the number of distance
tiers is set relatively low (n = 5), there is a clear spread
between medium and long trips (with X4 − X3 = 2 and
X5−X4 = 1.75), and there is a significant discount in short-
distance trips to incentivize ridership.

As mentioned earlier, many TransLink passengers are cur-
rently overpaying in the zone-based system; thus, by switch-
ing to distance-based fares, the percentage of lost revenue
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will exceed the percentage of gained ridership. As it is im-
possible to simultaneously increase forecasted revenue and
ridership, a trade-off is necessary. The above solution is an
appropriate trade-off.

In addition to our Java program that generates optimal
values for Xi, we created a separate Excel sheet so that
TransLink can immediately measure the change in fore-
casted ridership and revenue when altering the distance fares
Xi. This Excel sheet allows the user to input the elasticity
−k, the number of distance tiers n, the distance ranges for
each tier, along with their corresponding fare Xi. Using the
formulas provided in the proof of the Main Theorem, the Ex-
cel sheet re-calculates the forecasted revenue and ridership
whenever any Xi value is changed.

Conclusion
Our Main Theorem allows any transportation authority to
determine the optimal way to switch from zone-based fares
to distance-based fares, to maximize either ridership or rev-
enue. Furthermore, our Java program and Excel sheet en-
ables a transit organization to rapidly generate a solution,
and then use these Xi values as a starting point for adjust-
ment: perhaps to cap the maximum fare at a certain amount,
or to round up each Xi to the nearest quarter to see how that
change would affect ridership and revenue.

Future work includes adding more complexity to our
model. For example, there may be two different price elastic-
ities, −k1 for short trips and −k2 for long trips, in addition
to differences in short-term and long-term price elasticities
due to political changes that affect transit ridership, such as
carbon taxes. Thus, the Main Theorem would need to be up-
dated accordingly.

Furthermore, we can incorporate the more sophisticated
method of calculating elasticity, known as arc elasticity (Lit-
man 2017). For example, if k = −0.2 is the arc elastic-
ity, then a 40% fare increase is equivalent to forty 0.2%
reductions in ridership. Thus, the net loss in ridership is
1 − (1 − 0.002)40 = 7.7%, which is different from the
simpler 40 × (0.002) = 8% reduction under our simpler
point-price elasticity formula.

Since 1 − (1 − x)n ∼ 1 − (1 − nx) = nx for small x,
our point-price elasticity formula is a good approximation.
However, our Main Theorem would be sharpened by apply-
ing this more rigorous and precise definition of elasticity.

This research served as an initial exploratory analysis into
distance-based pricing, helping TransLink explore an ideal
number of tiers to confirm the feasibility of a distance-based
fare system. This work has formed an important part of the
two-year Transit Fare Review, which will assist TransLink
as it moves towards its final recommendation, which will be
tabled sometime in 2018.

The collaboration with TransLink was a tremendous suc-
cess, which included a one-month internship at the organi-
zation for the student-author of this paper. One of the senior
managers remarked that this third-year undergraduate stu-
dent “forged new ground with this approach”, and that her
“quadratic optimization model provided insight into aspects
of pricing and ridership and made us think about its applica-
tion and new possibilities.”
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