Playing SNES Games with NeuroEvolution of Augmenting Topologies

Son Pham, Keyi Zhang, Tung Phan, Jasper Ding, Christopher L. Dancy

Department of Computer Science, Bucknell University, Lewisburg, PA 17837
{son.pham, keyi.zhang, tung.phan, cd032, christopher.dancy}@bucknell.edu

Abstract
Teaching a computer to play video games has generally been seen as a reasonable benchmark for developing new AI techniques. In recent years, extensive research has been completed to develop reinforcement learning (RL) algorithms to play various Atari 2600 games, resulting in new applications of algorithms such as Deep Q-Learning or Policy Gradient that outperform humans. However, games from Super Nintendo Entertainment System (SNES) are far more complicated than Atari 2600 games as many of these state-of-the-art algorithms still struggle to perform on this platform. In this paper, we present a new platform to research algorithms on SNES games and investigate NeuroEvolution of Augmenting Topologies (NEAT) as a possible approach to develop algorithms that outperform humans in SNES games.

Introduction
Video games that require some strategy and with reasonably sized state spaces are great platforms for RL research. Traditionally, games used in RL research has been limited to board games like Chess, Checkers or more recently Go and Poker because they tend to have well-defined representation. Recently, RL research has used more visual games such as Atari 2600 games because these games have a fairly large state-space and encourage an approach that can generalize representation of visual inputs.

Algorithms like Deep Q-Network (Mnih et al. 2015) have been able to outperform humans in Atari 2600 games, but still struggle to perform well on SNES games due to the environment being far more complicated (Bhonker et al. 2016). In this extended abstract, we present two early contributions with following work:
• Introducing an environment to interface SNES games so that researchers can train RL algorithms on these games.
• Investigating NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen 2001) as a possible approach to develop RL algorithms for SNES games by creating a NEAT agent to play the game Top Gear (1997).

Interfacing with SNES Environment

We used BizHawk Emulator (TASVideos 2017), an open-sourced SNES emulator as the foundation for our environment. BizHawk contains many supporting features such as save-playback and speed up that are very helpful for setting up training environment. It also stores the entire RAM map, meaning that we can search for specific information of the game such as score, distance and ranking in real time.

Figure 1: Architecture of the RL platform.

We modified the source code so that it became a perception module. This module queries a Config file that contains all memory locations of specific game information such as score or distance. The module then constantly streams the visual input and these additional information through a TCP server. The TCP server then sends all input information to a control module, which then returns buttons pressed that can be fed back directly to BizHawk emulator.

This setup allows one to add a new game to the platform (by simply writing a Config file for each available game ROM) without writing new specific supporting code. The TCP server alternates the request between the two modules, meaning that the game will only proceed if it receives button output from the latest input, effectively eliminating any input delay problem. Separating the control and perception module also makes the task of writing the training mechanism in the learning module much easier.
NEAT Agent for Top Gear

We used this platform to develop an artificial agent to play Top Gear (1992), a car racing game in which one has to complete the race better than other 19 racers. We developed our agent to be a fully connected network that connect pixel inputs with 10 output buttons. Unlike other neural network algorithms (e.g., those using gradient descent), NEAT doesn’t require back-propagation, which means the framework does not need to build up a reservoir of “training samples.” Instead, the neural network (called genome) will modify its weights (called genes) through random mutation and crossover. All genomes will then directly control the agent in simulation runs to determine the “survival of the fittest.”

Random mutation and crossover of genome can creatively generate potentially desirable behavior that is not yet optimized to achieve high fitness score. To protect this innovation, NEAT groups similar genomes together and forces them to share fitness score, a process known as speciation. The difference or distance δ between two genomes can be calculated as:

$$
\delta = \frac{c_1}{N} E + \frac{c_2}{N} D + c_3 \bar{W}
$$

which is a linear combination of the number of excessive (E) and disjoint (D) genes and average weight differences of matching genes \bar{W}. If the distance is below a threshold δ_t then the two genomes are said to belong the same species and will share the adjusted fitness f'_i calculated as:

$$
f'_i = \frac{f_i}{\sum_{j=1}^{N} sh(\delta(i,j))}, sh(\delta(i,j)) = \begin{cases} 1, & \delta(i,j) < \delta_t \\ 0, & \delta(i,j) \geq \delta_t \end{cases}
$$

in which f_i is the original fitness value and $\delta(i,j)$ is the difference between gene i and every other gene j. The speciation process elegantly handles the exploration-exploitation dilemma in that it allows innovation to be protected (exploitation) while forcing ineffective species to go extinct, creating new room to optimize and mutate high-performing genomes (exploitation).

The fitness value of each genome will be determined after each evaluation run based on a function of in-game metrics. Originally, we only used Race Ranking for our fitness function. However, because initial genomes are not sophisticated enough to even finish the race, they all share the same reward for ranking 20th. This leads to the credit assignment problem in which many networks with great potential behaviors are regarded as the same as the ones without because they have the same reward. To alleviate the problem, we used a fitness function that both rewards long-term goals such as Ranking and short-term goals such as “moving forward” (Distance) and “keeping the speed high” (Speed). The fitness of genome i after finishing the race at rank R, distance L and speed $V(t)$ is as followed:

$$
f_i = -aR + bL + c \int \frac{dV(t)^2}{dt}
$$