AAAI Publications, Thirty-Second AAAI Conference on Artificial Intelligence

Font Size: 
WalkRanker: A Unified Pairwise Ranking Model With Multiple Relations for Item Recommendation
Lu Yu, Chuxu Zhang, Shichao Pei, Guolei Sun, Xiangliang Zhang

Last modified: 2018-04-26


Top-N item recommendation techniques, e.g., pairwise models, learn the rank of users' preferred items through separating items into positive samples if user-item interactions exist, and negative samples otherwise. This separation results in an important issue: the extreme imbalance between positive and negative samples, because the number of items with user actions is much less than those without actions. The problem is even worse for "cold-start" users. In addition, existing learning models only consider the observed user-item proximity, while neglecting other useful relations, such as the unobserved but potentially helpful user-item relations, and high-order proximity in user-user, item-item relations. In this paper, we aim at incorporating multiple types of user-item relations into a unified pairwise ranking model towards approximately optimizing ranking metrics mean average precision (MAP), and mean reciprocal rank (MRR). Instead of taking statical separation of positive and negative sets, we employ a random walk approach to dynamically draw positive samples from short random walk sequences, and a rank-aware negative sampling method to draw negative samples for efficiently learning the proposed pairwise ranking model. The proposed method is compared with several state-of-the-art baselines on two large and sparse datasets. Experimental results show that our proposed model outperforms the other baselines with average 4% at different top-N metrics, in particular for cold-start users with 6% on average.


one-class collaborative filtering; pairwise ranking; top-N recommendation

Full Text: PDF