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Abstract 
Current approaches to game design improvements rely on 
time-consuming gameplay testing processes, which rely on 
highly subjective feedback from a target audience. In this 
paper, we propose a generalizable approach for building 
predictive models of players’ emotional reactions across dif-
ferent games and game genres, as well as other forms of 
digital stimuli. Our input agnostic approach relies on the fol-
lowing steps: (a) collecting players' physiologically-inferred 
emotional states during actual gameplay sessions, (b) ex-
trapolating the causal relations between changes in players' 
emotional states and recorded game events, and (c) building 
hierarchical cluster models of players' emotional reactions 
that can later be used to infer individual player models via 
fuzzy cluster membership vectors. We expect this work to 
benefit game designers by accelerating the affective play-
testing process through the offline simulation of players' re-
actions to game design adaptations, as well as to contribute 
towards individually-tailored affective gaming. 

1  Introduction   
Over the past two decades, videogames have propelled 

many of the breakthroughs in computer graphics, artificial 

intelligence, and interaction techniques, among others. 

These advances have led us to the modern photorealistic 

virtual worlds filled with believable character behaviours 

and precise physics systems that bring players to an ever-

growing level of immersion and enable games to elicit a 

wide range of emotions. 

Although the search for reasons that lead people to play 

(Gilleade, Dix, & Allanson, 2005; Ryan, Rigby, & 

Przybylski, 2006) and why it’s a pleasurable experience 

(Ermi & Mäyrä, 2005) are subjects that have been studied 

over the years, it is only now, with the stagnating im-

provements on audio-visual realism, that the gaming indus-

try has started to focus on the players' affective experience. 
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It is a commonly accepted truth that video games must 

provide an engrossing experience by transporting the play-

er from the real to the virtual world. Understanding and 

improving on this ability to deeply engage the player 

seems to be the key to producing better gaming experienc-

es (Ermi & Mäyrä, 2005). This search for better levels of 

user experience embodies the philosophy behind Affective 

Computing; detecting and using human emotions as inputs 

to steer the overall experience towards a desirable one. 

Along with improving the existing gameplay experience, 

predicting players’ emotional reactions can give game de-

velopers a powerful tool to more finely-tune the original 

experience before releasing a game and accelerate the 

game design process - ultimately resulting in not only im-

proved, but also more quickly produced titles. 

Our main contribution focuses on a method to model 

player's emotional reactions to game stimuli based on 

fuzzy memberships to player clusters obtained through a 

bootstrapped hierarchical clustering algorithm. Our cluster-

ing approach initially attempts to approximate individual 

players’ emotional response functions to game events 

based on a set of observed emotional reactions. Individual 

player model pairs are then compared to find groups of 

players that share similar reactions, through the hierar-

chical clustering algorithm. Using the clusters’ more robust 

models, we compute players' fuzzy membership vectors to 

the found clusters, based on a simple distance function. 

2  Player Modelling 
Player modelling has been a popular topic in game re-

search, mainly because of the substantial advantage that 

knowing in advance how a player might chose to act pro-

vides in terms of potential future game adaptations. 

More recent approaches have taken this concept and at-

tempted to use them for modelling player experience 

(Yannakakis & Togelius, 2011). The most straightforward 

way to do this is through player's questionnaire responses. 
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Although this process may create very accurate models 

(Shaker, Yannakakis, & Togelius, 2010), the considerable 

presence of experimental noise (derived from human error 

in self-judgment, memory, etc.) and the intrusiveness of 

the method can lead to difficulty in analysing the data. The 

work by (Tognetti et al., 2010) shows how self-reports can 

be successfully used to capture aspects of player experi-

ence. Similarly, in (Shaker et al., 2010) player experience 

models were built on an emotional basis using crowd-

sourced data on player actions and level design features. 

A less intrusive approach relies on using gameplay data 

(e.g. how many times a certain action was performed) in an 

attempt to build these models (Etheredge, Lopes, & 

Bidarra, 2013). The main assumption is that player actions 

and preferences are linked to player experience, making it 

possible to infer players’ emotional states by studying their 

interaction patterns. This approach is the least intrusive 

one, thus becoming a candid possibility for real world us-

age. However as stated in (Yannakakis & Togelius, 2011), 

the models are often based on several strong assumptions 

that relate player experience to gameplay actions and pref-

erences, resulting in a low-resolution, often unsatisfactory 

or over simplistic, model of players’ affective experience. 

Prior work on physiological player modelling has 

achieved promising results in predicting subjective player 

experience reports using simple physiological metrics 

(Lankes et al., 2012; Martinez, Garbarino, & Yannakakis, 

2011; Vachiratamporn et al., 2013). Game narratives have 

also been shown to be dynamically adaptable in response 

to players' physiological state (Gilroy & Porteous, 2012), 

proving this technology can be applied to various facets of 

the gaming experience. We hypothesize that the success 

obtained by these approaches may be due to their usage of 

a more objective and continuous data source that arguably 

lowers the amount of experimental noise and provides a 

richer data source. 

While, as in the aforementioned work, we employ physi-

ological metrics, our method is input independent, abstract-

ing the emotional data as an n-dimensional waveform and 

game events as class labels (see Section 4). 

3  Testbed Horror Game 
Vanish is a survival horror videogame where players must 

navigate a network of procedurally generated maze-like 

tunnels to locate a set of key items, before being allowed to 

escape (Fig. 1). During gameplay, the player must avoid a 

creature that continuously stalks him. Several visual and 

audio events (e.g. lights failing, steam or water pipes burst-

ing or the creature distant cries) also occur, in order to keep 

the player engaged. These events, along with creature en-

counters, deaths and locating new items are automatically 

logged by the game and constitute the set of considered 

game events. The dataset used in this study was extracted 

from 72 gameplay sessions from 24 participants, ranging 3 

different game versions varying in level layout, pacing, 

game mechanics and difficulty. The dataset comprised over 

30 hours of logged gameplay events and physiological data 

(Fig. 3). Before playing, players underwent a physiological 

calibration session and a brief game tutorial before playing 

the game in an isolated environment.  

4  Data Collection & Extraction 
As we have previously discussed, our aim is to model 

players' individual emotional response functions to a set of 

game events G={g1,...,gk}, given an initial (henceforth re-

ferred to as prior) emotional state λp, such that λp  Λ, the 

set of considered emotional states (see Section 5 for a for-

mal definition). 
One of the major issues in building physiological-based 

models is acquiring enough data from (unbiased) gameplay 

sessions. In this section we describe how the physiological 

data was interpreted as emotional states and how the emo-

tional reactions to each game event were extracted. 

Emotional State Detection 
We estimate players' emotional states in terms of the 

arousal-valence dimensions (Russel, 1980) through their 

physiological readings. As physiological data varies con-

siderably between individuals, we employ the regression-

based approach proposed by (Nogueira, Rodrigues, 

Oliveira, & Nacke, 2013b) to properly scale these readings 

using data gathered during a pre-game calibration session. 

We then apply the grounded rules proposed by (Mandryk 

& Atkins, 2007) to convert the normalised readings into 

arousal and valence. 

Arousal was derived from skin conductance (SC) and 

heart rate (HR) data, while valence was derived from facial 

electromyography (EMG) measured at two sites and HR as 

a fall back. Regarding sensor placement, SC was measured 

at the player’s left index and middle fingers using two 

Ag/AgCL surface sensors snapped to Velcro straps; HR 

 

 
Figure 1. Screenshot of a creature encounter event on a Van-
ish gameplay session. 
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was derived from BVP, measured by a clip-on sensor at the 

left thumb; and facial EMG was measured at the zygomati-

cus major and the corrugator supercilii muscles. 

While our method is not reliant on physiological data – 

any continuous n-dimensional waveform is acceptable (see 

definitions 1 and 2) – we describe the data collection and 

treatment process to assure our approach is reproducible.   

Definition 1 (Emotional State). An emotional state λ  Λ 

is defined as a n-tuple λ = (λ1,λ2,...,λn), where each element 

represents a dimension of the considered emotional theory 

representing the emotional state. 

In our case λ = (A, V), where: 

� A is the observed value in the arousal space, with 
 

� V is the observed value in the valence space, with 

. 

 
Definition 2 (Emotional State Waveform). The emotional 

state waveform W is defined as the tuple W = (wA, wV), 

where wA and wV are the continuous, uniformly sampled 

emotional state classifications for arousal and valence, re-

spectively and are of the form wx=[wx1,wx2,…,wxn].  

Emotional Reaction Extraction 
The processed physiological data produced two emotional 

state waveforms wA and wV with a 1:1 mapping for each 

study participant over a wide emotional spectrum (see Fig. 

3). The waveforms, along with the game’s event log 

metadata, were then synchronized and used to extract play-

er’s emotional reactions in a ‘through-to-peak’ fashion. 

Definition 3 (Emotional Reaction). Consider a specific 

instance of a game event gi and its corresponding 

timestamp  on the emotional state waveform w. Consider 

also the time interval T associated with this specific event 

gi, such that  = [max( , -α), min( +β, )], 
where both α and β are parameterisable event horizon vari-

ables (in this paper α=2 and β=8 to account for a baseline 

value prior to the game event and the delays in physiologi-

cal responses (Stern, Ray, & Quigley, 2001) and event log-

ging). We define an emotional reaction as game event gi 

and the pair of local maxima or minima (m, ) of each 

emotional state dimension, taken from the prior  = 

[max( , -α), ] and subsequent  = [ , 

min( +β, )] time intervals that exhibit the highest 

distance between them. Both  and  are extracted from 

a set of candidate peaks  such that: 

 (Eq. 1) 

Where φ is a minimum absolute local variability thresh-

old, such that φ = (  + ), with  and  denoting 

the mean and standard deviation values of the considered 

AV dimension in the considered time interval, respective-

ly. The maximum 10-second window imposed on T by α 

and β was specifically designed for this particular study by 

having in mind: a) the response delays of the physiological 

 

Figure 2. Emotional signal waveform with annotated reactions to game events. Arousal and valence levels are shown discretized into 5 
levels for illustrative purposes. Blue and red circles denote the player's prior and response emotional state, respectively. Green dotted 
lines represent the event associated time window T (~5 seconds in this illustrative example). 

 

Figure 3. Density plot of the normalised elicited emotional 
spectrum over all 72 gameplay sessions. 
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data used in the emotional classification method (up to 5 

seconds for SC), b) the time the stimuli usually takes to be 

perceived – between 1 to 2 seconds due to the lag between 

the game’s telemetry system logging the event and the time 

it was actually triggered in-game, and c) the time the emo-

tional response may take to fully manifest itself – in aver-

age approximately 1 second, from empirical analysis.  

Thus, an emotional reaction  is defined by the trigger-

ing game event instance gi, the prior emotional state  and 

the response emotional state  formed by the conjunction 

of the local maxima or minima pairs (m, ) of each emo-

tional state dimension: . An illustrative 

example of several emotional reactions identified on a par-

ticipant’s emotional state waveform is presented in Fig. 2. 

Unfortunately, two subjects didn’t have their reactions 

recorded due to hardware failures. A third one isn’t present 

due to a logging system malfunction. Furthermore, events 

that occurred very sparsely (e.g. dying) or registered no 

emotional reactions were not considered as their inclusion 

would artificially inflate the results. After this filtering 

process, the used dataset registered over 1,160 emotional 

reactions, over 12 of the original 15 gameplay events. 

5  Affective Player Models 
As we have previously discussed, our aim is to model 

players' individual emotional response functions to a set of 

game events, given a prior emotional state. More formally, 

these models should obey the generic function  (1): 

 (Eq. 2) 

Where function Φ receives a prior emotional state λp and a 

game event g, and outputs a weight vector  that contains 

the probabilities of observing a transition to each of the 

possible emotional states Λ (|Λ| = | |), if the considered 

game event g is performed at the prior emotional state λp. 

In this section we describe how the extracted reactions 

are used to approximate players’ emotional reaction func-

tions to game events. We start by defining this approxima-

tion process (Definition 4) and then describe how the cre-

ated models can be used to cluster player pairs through a 

bootstrapped hierarchical clustering approach. 

Approximated Player Models 
Definition 4 (Approximated Player Model). Let 

 be the set of emotional reactions extracted 

for a single player p and  be the 

sub-set of emotional reactions to a particular game event g, 

such that . An approximated player model (APM) 

can be defined as the approximation (i.e. conditional ex-

pectation) function of the independent variables - the play-

er's response emotional state  - in regards to the depend-

ent variables - the player's prior emotional state  and 

triggering game event g. Given that we logically assume 

players' reactions to be independent to game events (i.e. 

each game event influences the player differently), game 

events are regressed separately, which also reduces the 

overall model complexity and training time. Moreover, 

since no assumptions can be made on the form of the play-

ers' underlying emotional reaction function, as no theoreti-

cal framework exists, a non-linear model, as in previous 

works would seem advisable (Martinez et al., 2011; Shaker 

et al., 2010). Thus, the player's reaction to a specific game 

event can be modelled as a multivariate non-linear regres-

sion function based on his emotional state prior to the trig-

gering game event (3): 

 

 
(Eq. 3) 

Where  denote the dimensions of the 

prior emotional state, n denotes the regression's polynomial 

order (in this paper p=2 and n=3) and Y represents the pre-

dicted value for the dimension of the response emotional 

state being modelled. A player's APM is thus defined as a 

set of k=nm regression surfaces that represent his emotion-

al reaction functions to each of the individual n game 

events over the m dimensions of the AV space (4). In this 

paper, n=15 and m=2. 

 (Eq. 4) 

Due to their high expressiveness, polynomial regression 

models are known to easily overfit the available data (albe-

it to a much lesser degree than other popular machine 

learning techniques such as neural networks). Thus, upon 

an initial analysis of our dataset, we decided to adopt a 

supervised stepwise regression scheme capped at third or-

der polynomials. Another common issue with machine 

learning techniques is the rapidly increasing degree of un-

certainty when extrapolating (i.e. the error involved in 

making predictions outside of the training dataset's value 

range quickly rises). To counter this issue we applied a 

tapering function to each built model, restricting it from 

predicting values outside  of the dependent variable. 

This prevents the model from predicting illogical response 

values due to simple extrapolation errors. 

Distance Matrices 
In order to cluster player’s according to the similarity of 

their emotional reactions, we require a inter APM distance 

metric (Definition 5). 

Definition 5 (Inter APM Distance). Let  and  be two 

approximated player models, whose distance is given by: 

 (Eq. 5) 

135



Where  represents the distance between two re-

gression surfaces, which, in turn, is given by: 

 (Eq. 6) 

Where  is the sampling granularity of the continuous 

regression surface generated by the model Y (  = 0.1 in 

this paper). Although various metrics can be employed in 

this step (e.g. Euclidean, Manhattan), not to mention nu-

merous transforms (e.g. sigmoid, logarithmic), an exponen-

tial function allowed us to easily differentiate between in-

creasingly dissimilar models in a non-linear fashion appro-

priate for the clustering approach. 

Put differently, the inter APM distance represents the av-

erage similarity of two players across equivalent game 

events and emotional response dimensions. Notice that 

since we have no supporting evidence that any game event 

poses a higher influence on the game's affective experi-

ence, all elements of the APM matrices were equally 

weighted (5). 

Upon computing the inter APM distances for each ap-

proximated player model pair, they are organized into a 

distance matrix that is fed to the clustering algorithm. 

Bootstrapped Hierarchical Clusters 
To find player clusters, we applied a hierarchical clustering 

algorithm to the distance matrix obtained from computing 

the inter APM distance for each player pair. In order to 

obtain an initial estimate on the clusters’ significance, we 

applied a multi-scale bootstrap resampling process, which 

allowed us to obtain Approximately Unbiased (AU) p-

values for each identified cluster (see Fig. 4) (Suzuki & 

Shimodaira, 2006). These values represent the confidence 

that a particular cluster is supported by the data, as op-

posed to a random sampling error effect. Formally, a clus-

ter with an AU p-value of x the null-hypothesis “the cluster 

does not exist" is rejected with a significance level s = 100-

x. As such, high AU values lead us to the belief that the 

cluster would be stably observed with an increasing num-

ber of observations.  

Cluster Analysis & Validation 
While the AU p-values provided by the bootstrap 

resampling process indicate that the created clusters are 

well supported by the data (see Fig. 4), they do not offer a 

tangible proposition as to the optimal number of clusters. 

Common approaches are to cut the tree at the largest 

links or to manually analyse the created clusters to deter-

mine the most relevant ones (Etheredge et al., 2013; 

Holmgård, Togelius, & Yannakakis, 2013). However, 

more objective and less domain knowledge dependant 

techniques exist. Two of the most widely accepted ones are 

the Sum of Squared Error (SSE) and Dispersion coeffi-

cients (7-8), which measure the within cluster cohesion and 

between cluster separation, respectively. 

  (Eq. 7) 

  (Eq. 8) 

Since cluster cohesion (inverse SSE) and dispersion natu-

rally increase as more clusters are created, a stopping crite-

rion is required. Popular choices include zero-crossings 

and inflexion points, as these denote critical points where 

further splitting the data results in diminishing returns. We 

chose the inflexion points as both curves had noticeable 

inflexion points at the same cluster number (Fig. 5). 

The created clusters were also manually cross-matched 

with the demographics data reported by the players; genre 

preference (whether players liked horror games or not), 

gamer type (casual or hardcore) and sex. Results were en-

couraging and showed clear divergences between clusters. 

For example, we found that C1 contained only male hard-

core players, while C4 was made up of mainly softcore 

players that disliked horror games. However, this does not 

mean that, for example, C1 contains all male hardcore 

 
Figure 4. Bootstrapped hierarchical clusters. AU p-values 
are shown in red, BP values in green. 

 

Figure 5. SSE and dispersion values for increasing cluster 
counts. 
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players, which suggests the collected demographics are 

able to roughly outline the player characteristics but addi-

tional information would be necessary to characterize the 

found player groups. 

6  Extrapolating Individual Player Models 
through Fuzzy Memberships 

While the identified player clusters allow us to examine 

how particular player types would react under any given 

game state, they also remove the possibility of individually 

predicting players’ reactions. Using players’ approximated 

models instead could easily solve this issue, but doing so 

would not allow the reuse of the hierarchical model for 

new players. To address this issue, we model each player 

according to a fuzzy membership vector, expressed 

through his relative distance to each cluster (see Definition 

6). This is a common approach in soft clustering methods 

(e.g. fuzzy c-means) to allow a certain degree of uncertain-

ty when making predictions and also to differentiate be-

tween members of the same cluster. Since we wanted our 

model to be capable of representing unseen players without 

rebuilding the cluster models, we decided to compute the 

membership function outside the clustering process. Figure 

6 presents the obtained player-cluster membership vectors. 

Definition 6 (Fuzzy Player Model). Let C={C1,C2,...,Cn} 

be the set of clusters as identified by the hierarchical clus-

tering algorithm. Also, consider a cluster C to be repre-

sented by the average of the APM models {M1,M2,...,Mn} 

associated with it. A player with an APM M belongs to 

each cluster C in inverse proportion to his distance to the 

cluster model (9) after being normalised over all existing 

clusters (10): 

 (Eq. 9) 

 (Eq. 10) 

Thus, the final player model  can be expressed in terms 

of its fuzzy cluster membership 

tor  that determines the 

weight each individual cluster response should be given 

when predicting the player's emotional response. 

7  Discussion 
The results presented by the clustering approach reveal that 

besides the selected clusters, most other possible clusters 

are heavily supported by the data (see AU/BP p-values in 

Fig. 6). Besides indicating that we were able to successful-

ly differentiate between players based on their emotional 

reaction functions, it also suggests that re-interpreting the 

clustering structure at different levels might lead to clusters 

possibly representing very dissimilar player groups. 

Game designers can, for example, examine which clus-

ters are highly significant and then inspect the models to 

see how large chunks of the gamer population are reacting 

to each game event and under which emotional conditions. 

Another potential application would be to use the created 

models to simulate how hypothetical changes to the game’s 

design (both at a fundamental and punctual levels) would 

impact each player/player group’s affective experience. 

This would require at least a high-level simulator for the 

game on which the players’ behaviour could be replicated 

but could pose an invaluable asset for accelerating the 

game design and testing process. We are pursuing this goal 

also in order to validate the effectiveness of this type of 

approach on affective player modelling (Nogueira, 

Rodrigues, Oliveira, & Nacke 2013a; Nogueira  2013). 

While we use psychophysiological related data to infer 

players' emotional states, our method is not dependent on it 

and can be easily adapted to a varying number of emotion-

al theories, using dissimilar dimensions. Despite further 

validation still being required, given that our method mod-

els player reactions to game events individually, it should 

scale well to other game genres with dozens or even hun-

dreds of events (e.g. MMORPGs). 

Due to the added robustness offered by the clustering 

method and our fuzzy membership approach, our method 

should be able to both accurately estimate new players’ 

cluster memberships and improve the clustering structure. 

Besides this, the relatively low computational cost in-

volved in building these models also means that re-

computing them on-the-fly is feasible as more data be-

comes available. This means that they are able to converge 

towards players’ current true affective reaction models as 

they become used to (and possibly less emotionally influ-

enced) by their continued exposure to the game. 

 
Figure 6. Individual player membership vectors. Columns 
represents players and shaded areas the individual cluster 
membership probability for clusters C1 to C6. 
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