
Character Beliefs in Story Generation

Markus Eger, Chris Martens
meger@ncsu.edu, crmarten@ncsu.edu
Principles of Expressive Machines Lab

NC State University
Raleigh, NC, USA

Abstract

Character beliefs play a central role in many narratives, but
are often not represented in planning-based author-centered
narrative generation systems, or only represented in an ad
hoc way. In this paper we will discuss how actions in Dy-
namic Epistemic Logic that affect the story world as well as
the characters’ beliefs, can be used in the context of narrative
generation. By using this logical foundation we can ensure
that the actors’ beliefs are maintained in a logically consis-
tent way, but we will also discuss how our system supports
writing these complex logical operations in a concise way.
We will also show how our system, which has limited plan-
ning capabilities, can come up with simple stories that cause
characters to have beliefs desired by the author, and how our
approach can be integrated with other work in the field.

Introduction
Darth Vader: Obi-Wan never told you what happened
to your father.
Luke: He told me enough! He told me you killed him!
Darth Vader: No, I am your father.
Luke: No. No! That’s not true! That’s impossible!

Disparities in character beliefs are an essential part of many
narratives across many genres, as exemplified by the iconic
scene from Star Wars Episode V: The Empire Strikes Back
(Lucasfilm 1980) presented above. In this particular in-
stance, Luke held the belief that his father was killed by
Darth Vader, because this was conveyed to him earlier by
his mentor, Obi-Wan Kenobi. However, as is revealed in this
scene, Darth Vader actually is his father, causing a surprised
reaction by Luke (and the audience at the time). Of course,
characters believing something only to be later informed that
their beliefs were incomplete or wrong is not unique to Star
Wars or the genre of Science Fiction, but does occur in vir-
tually every narrative genre. Some genres, like detective sto-
ries, are even entirely built around the notion of a detective
character obtaining information over time and forming the
proper beliefs while the perpetrator of the crime tries to mis-
lead them. In this case, it is common to have multiple nested
levels of beliefs, e.g. the criminal believing that the detective

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

believes that a third party is guilty. In fact, TV Tropes lists
such deeper levels of nested beliefs as its own trope.1

Since beliefs and beliefs about beliefs often play a cen-
tral role in narratives, it is be beneficial to be able to rep-
resent and reason about them in computational systems that
generate narratives as defined by an author. In this paper we
present how our work on practical Dynamic Epistemic Logic
can be used to model character beliefs in narratives and used
to generate (simple) narratives that fulfill an author’s stated
goals for the characters. We will also discuss how this ap-
proach could be integrated with existing techniques used in
the field.

Related Work
Narrative Generation, or more precisely, fabula generation
is the problem of algorithmically creating stories. One ap-
proach that has been applied successfully is to view it as a
problem-solving task in which an algorithm is tasked with
finding a sequence of actions in the story world that ful-
fill the author’s goals (Dehn 1981). It has been noted that
AI planning can be used for this process, often with guid-
ance by the human author to provide a general trajectory for
the story in the form of landmarks that the resulting plan
has to pass through (Porteous and Cavazza 2009). However,
because the planner only works towards the author’s goal,
this approaches may result in undesirable stories, because
the characters don’t always act in their own best interest. To
prevent this from happening, Riedl and Young (2010) ex-
tended the standard planning formalism with a representa-
tion of intentionality, which was further extended by Ware
and Young (2011) to enable actors to drop intentions in the
face of conflict. However, Cohen and Levesque (1990) have
argued that the notion of intention is tightly linked with be-
lief and can not be viewed independently. In the context of
narrative generation, Eger et al. (2015) have also argued that
a richer representation of narratives based on modal logic
may be beneficial in certain scenarios. While their argument
is that discourse generation, i.e. generating how a story is
told, may need a representation of characters’ beliefs to be
able to tell the story from their point of view, we argue that
having this belief representation benefits fabula generation
as well. In fact, Teutenberg and Porteus (2015) have already

1http://tvtropes.org/main/IKnowYouKnowIKnow

The AIIDE-17 Workshop on
Intelligent Narrative Technologies

WS-17-20

184

described how to incorporate character beliefs into inten-
tional planning, and the benefits that come with it. They use
the story of Romeo and Juliet as an example where char-
acters’ (wrong) beliefs are central to the story. While their
approach allows the representation of beliefs about beliefs,
and is applicable to a wide range of narratives, it does not
come without limitations. For example, a deceptive action
that they show, feign death, is deceptive by virtue of the fact
that it has two effects: One to indicate the perception of the
agent, namely that the target is not alive, and one to indi-
cate that the act was deceptive, which in this case is called
“feigning death”. Every other action that refers to actors be-
ing alive or not then also has to be modified to take the case
of feigning death into account. When multiple such decep-
tive acts can occur for the same fact, this can become un-
manageable for domain authors. Our approach avoids such
problems by using a logical formulation that can naturally
represent deception and mistaken beliefs.

Epistemic Logic is the logic of knowledge and beliefs
(Hintikka 1962) (for a more current and accessible descrip-
tion see the Stanford Encyclopedia of Philosophy Archive
(Hendricks and Symons 2015)). It can be used to reason
about the state of the world, as well as what actors believe
about the world, believe about other actors’ beliefs, etc. The
semantics of such logics are often given by a possible worlds
model (Kripke 1963), where one world is marked as the ac-
tual world, which describes the state of the physical world,
and several worlds that are in relation to the actual world
describing which worlds an actor considers possible in the
actual world. This relation is called the (belief) accessibility
relation, and the set of worlds that are belief accessible by an
actor represent that actor’s beliefs and uncertainty about the
world. Each of these worlds may in turn have other worlds
that are belief-accessible by the actor themselves or other
actors, representing beliefs about beliefs. We will call the
set of worlds V that is belief-accessible to an actor a from a
world w the appearance of that world w to the actor a, and
say that the world w looks like any of the worlds in V . An
actor believes some fact φ if it holds in all worlds that are
belief-accessible from the actual world. Such a belief will
be written as �aφ.

While Epistemic Logic is concerned with the represen-
tation of a fixed state of the world and the beliefs of the
actors therein, Dynamic Epistemic Logic (DEL) (Van Dit-
marsch, van Der Hoek, and Kooi 2007) provides the means
to describe how the world and beliefs change over time.
While there are several different flavors of DEL, the clas-
sical approach is to view actions similar to states: An ac-
tion has an actual action that describes how it changes the
physical world, as well as alternative actions, some of which
are accessible to each actor via a relation similar to the ac-
cessibility relation above. These alternative actions describe
the appearance of the actual action to the different actors.
This makes it possible to model, for example, an action that
changes the value of a variable x to 3, while it appears to
one actor that the value of the variable is changed to 2 and
another actor may believe that is changed to either 1 or 5.
Actions are applied to states by applying the actual action to
the actual state, and the appearance of an action to an actor

to every world in the appearance of the actual world to that
actor. This way, the worlds an actor considers possible at any
point are the result of what the actions that happened looked
like to the agent. A particular flavor of DEL, presented by
Baltag (2002), also allows actors to merely suspect that an
action happens, even if it doesn’t in reality. In this model, ac-
tions have preconditions and can only be applied to worlds
where these preconditions hold. If an actor suspects that an
action that requires p to be true to happen, an action that ap-
pears to them as having p as a precondition will be executed.
This appearance of the action is applied to every world in the
appearance of the actual world to that actor, but will only ap-
ply to the worlds in which p holds. The result is that the actor
will discard any worlds that they previously considered pos-
sible in which p does not hold, causing them to believe p. In
other words, suspecting something is the process of adopting
a belief without having evidence for the fact, i.e. the belief
may or may not be mistaken. On the other hand, the pro-
cess of acquiring a belief based on the objective reality of
the world is called learning and works analogous, with the
difference that the actual action also has p as a precondition,
i.e. if p does not hold, the action does not apply.

Approach
Our approach provides the means to write actions in Dy-
namic Epistemic Logic that can be used in a story world.
The advantage of using a logical representation like this is
that it comes with sound reasoning capabilities that ensure
that the results of actions are logically consistent. We will
show an application of this in the example section later, but
first we will detail the capabilities of our system. It is based
on Baltag’s variant of Dynamic Epistemic Logic to repre-
sent epistemic actions, but supports a more concise syntax
that is then compiled to the logical notation itself. The de-
tails of this compilation process are discussed in more detail
in an upcoming publication (Eger and Martens 2017). For
this present paper, we will just briefly describe the syntax we
support. Then we will detail how these actions can be exe-
cuted and how this execution process can be used for story
generation, similar to a planning process.

Action Syntax
Actions, in our system, are written in a syntax inspired by
imperative programming languages of the C-family.

pickup(a: Actors, i(a): Item)
{

precondition at(a) == at(i);
if (holdable(i) == True)
{

public (a) holder(i) = a;
}
else
{

learn (a) holdable(i) == False;
}

}

Listing 1: An example action in our language

185

Listing 1 shows an example of an action, in which an actor
attempts to pick up an object. If the object can be held, they
will then be holder of that object, otherwise they will learn
that it is not holdable. As this example illustrates, actions in
our language can have the following components:

• Parameters, each with a type, which is a set of objects
the parameter can be bound to. Note that some param-
eters may be secret to most actors, and only known to
some. This is written by placing the actors the parameter
is known to in parenthesis after the parameter name. In
the example action, the i parameter, which is the item that
is picked up, is only known to a, the actor performing the
action, and thus is written i(a): Item. The effect of
this is that other actors will know that an object has been
picked up by the actor a, but not which, i.e. the appearance
of the action to other actors is such that the i parameter is
bound to any valid value.

• Assignment statements describe the actual changes that
are made to the world. Our language allows the definition
of arbitrary properties of objects, to which values can be
assigned.

• Preconditions are conditions that must be true for the ac-
tion to be executable.

• If/Else Conditions allow the conditional execution of
statements.

• Public statements modify how changes to the world are
shown to the actors. By default, statements are transparent
to the actors, i.e. they know that an action is happening,
but not what that action does. By making a statement pub-
lic to a set of actors, these actors will truthfully believe
that the change of the property value happens.

• Learn/Suspect statements allow the explicit communi-
cation of conditions to actors. A learn statement will
truthfully communicate to the given actor(s) that a con-
dition holds, while the suspect statement that follows
the same syntax with the keyword learn replaced with
suspect may communicate things that are not true.

Note that conditions in our system may contain quantifiers.
This makes it possible, for example, to tell an actor that
there exists an object that satisfies a certain condition, which
we write as learn (a) Exists o in Objects:
p(o) == x. There are also two special pseudo-quantifiers
for the learn and suspect statements:

• Which behaves similar to Exists, but in addition to
telling the actor that an object fulfills the condition, the
actor is also told which object that is. If there are multiple
such objects, this will result in a multiple result states, one
for each object. The main use for this pseudo-quantifier is
to tell an actor the value of a property.

• Each will tell the actor the exact subset of objects for
which a condition holds. In other words, for each object
in the given set, it will tell the actor if that object satisfies
the condition. This pseudo-quantifier is mainly useful to
have characters partition a set of objects based on some
criterion.

Additionally, because epistemic actions have an effect on the
actors’ beliefs, it is also possible to query those beliefs in
a condition. Analogous to the �a-notation from epistemic
logic, this is written using as [] (a) c, which represents
that actor a believes the condition c.

Initial State
To use the actions defined using the syntax described above,
our system must be provided with an initial state to which
the actions can then be applied. The way the initial state
is defined in our system mirrors the possible worlds model
from Epistemic Logic: The user defines one actual world,
and any number of alternative possible worlds and which
actors can access which other worlds from each world. List-
ing 2 show an example definition of an initial state. It de-
fines that the actor Sherlock is at the location Baker Street
in the initial state, and the appearance of that world to Sher-
lock is only the initial world itself, while the appearance of
that world to Moriarty includes an alternative world, Alt1 ,
in which Sherlock is at Scotland Yard. These two worlds
represent Moriarty’s uncertainty about the location of Sher-
lock. Note that even the alternative world Alt1 has an ac-
cessibility defined for Sherlock, which only includes Alt1 .
This represents, that while Moriarty does not know whether
Sherlock is at Baker Street or at Scotland Yard, she2 knows
that he knows where he is in either case. Likewise, Sherlock
knows that Moriarty does not know for sure where he is, but
considers these two options possible.

Initial:
at(Sherlock) = BakerStreet
looks like (Sherlock): Initial
looks like (Moriarty): Initial, Alt1

Alt1:
at(Sherlock) = ScotlandYard
looks like(Sherlock): Alt1
looks like (Moriarty): Initial, Alt1

Listing 2: An example for an initial state

Action Execution
To execute actions, a user provides an execution trace, which
consists of actions to be executed, print statements, queries
to the state and goals to be planned towards. The syn-
tax to execute an action is the same as used for a func-
tion call in C-like languages, i.e. consisting of the name of
the action followed by the values its parameters should be
bound to in parenthesis, separated by commas. For exam-
ple, to execute the pickup action from above, one would
write pickup(Sherlock, clue). The first action in
the execution trace is applied to the initial state, and pro-
duces a new state to which the next action is then ap-
plied, and so forth. Rather than actually executing an ac-
tion, it is also possible to have an actor merely suspect that it
happens, for example by writing Moriarty suspects
pickup(Sherlock, clue). This will not change the

2To distinguish between them we will refer to Moriarty with
female pronouns and to Sherlock with male pronouns.

186

actual world at all, but only have an effect on the suspect-
ing actor’s mental state. At any point in the execution trace,
a print statement may be used to show the current actual
world, with or without its appearance to the different actors.
This output contains all facts that hold in the actual world
or its appearances, and may be hard to parse for humans.
We therefore also provide the capability to query the state
using the same syntax that is available for conditions in if-
statements, including the ability to query actors’ beliefs. Fi-
nally, and for the purpose of this paper most importantly, it
is not necessary for the user to provide a concrete list of ac-
tions that they want to be executed, but can simply provide
a condition that they want to hold as a goal. The system will
then search for and execute a sequence of actions such that
that condition holds. This sequence of actions may contain
the actual execution of actions, or just a suspicion on part of
a character that an action happened. We will describe how
this search process works in more detail in the next section.

Goal-Directed Search
When the execution trace contains a goal definition, which
is indicated by the keyword goal, followed by an arbi-
trary condition, for example goal: holder(clue) =
Sherlock, our system will try to find a sequence of ac-
tions such that after the execution of these actions starting at
the current state, the goal condition is fulfilled, similar to the
definition of the classical planning problem (Hendler, Tate,
and Drummond 1990). When our system encounters a goal
definition, it will insert all possible combinations of parame-
ters into the action definitions, and additionally add versions
of each of these action instances that are merely suspected
by each actor. This set of actions and suspected actions is
then used in a breadth-first search (Bundy and Wallen 1984)
until a state is reached in which the goal is satisfied. In this
case, the number of possible ways to assign parameters to all
actions, multiplied with one plus the number of actors (for
the suspected actions) determines the branching factor, and
can be prohibitively large. We will first show a short exam-
ple that is still tractable using this approach and then discuss
how it could be integrated with more efficient planning ap-
proaches.

Example
To demonstrate how epistemic actions defined in our lan-
guage and the limited goal-finding capabilities of our sys-
tem can be used in narrative generation, consider a detective
story, in which the murderer wants to frame another charac-
ter by hiding the gun in their garden. Listing 3 shows how we
can define actions for this domain. The take and put ac-
tions allow any suspect to pick up or put down a gun, while
the kill action requires that they own the gun used for the
murder.3 Note that all three of these actions have a secret
parameter m that is only known to m themselves, i.e. only
the person performing the action knows that they were the
ones doing it, everyone else will consider any person to be
the possible actor for the action.

3To shorten the example, we have conflated owning a gun with
carrying it.

take(m(m): Suspects, g: Guns)
{

gunowner(g) = m
}
put(m(m): Suspects, g: Guns, l: Locations)
{

precondition gunowner(g) == m;
gunowner(g) = Null;
at(g) = l

}
kill(m(m): Suspects, v: Victims, g: Guns)
{

precondition gunowner(g) == m;
murderer(v) = m

}
find(d: Detectives, g: Guns, l: Locations)
{

precondition at(g) == l;
suspect (d): gunowner(g) == owner(l)

}

Listing 3: Some actions for the detective domain

The find action, finally, causes the detective that per-
forms it to suspect that the person who owns the location
where the gun was found is also the owner of the gun.
This means that find has a purely epistemic effect, which
causes the detective to believe that they found the gun owner,
whether or not they are right.

Initial:
owner(Manor) = Moriarty
owner(Shed) = Watson
looks like (Moriarty,Sherlock,

Watson,Victim): Initial

Execute:
take(Moriarty,pistol)

goal: [] (Moriarty): [] (Sherlock):
murderer(Victim) == Watson

print: state
query: [] (Sherlock):

murderer(Victim) == Watson

Listing 4: The initial state and execution trace to generate
part of the detective story

To generate a narrative, we can execute a trace like the one
shown in listing 4, starting from the initial state also shown
there. Note that, in this example, every character knows ex-
actly what the state of the world is initially. We then ex-
plicitly execute the take action to have Moriarty take the
pistol. Because this action has a secret parameter, in partic-
ular the person taking the gun is only known to that person
themselves, other actors will only know that the action was
performed, but not what the actual value of that parameter
was. For example, the detective will now consider multiple
worlds possible, one for every possible suspect having taken
the pistol, as shown in figure 1. Note that, as a logical conse-
quence of how the action is defined, Watson also knows that
Moriarty took the gun, since she is the only other suspect,
and Watson knows that he does not have the gun. This is an

187

gunowner(pistol) = Moriarty

gunowner(pistol) = Watson

Sherlock

Sherlock,Moriarty,Watson

Sherlock,Moriarty,Watson

Figure 1: The epistemic state after Moriarty takes the gun.
Each node represents one possible world with the actual
state on top marked with a double outline. The directed dges
represent the accessibility relation, i.e. in each world an ac-
tor considers all worlds possible that can be reached with
an edge labeled with that actor’s name. The interpretation of
this particular state is that Sherlock does not know which of
the two suspects owns the gun, but he knows that whoever
took the gun, knows that they took the gun, and they know
that Sherlock does not know.

example for how the logical foundation we are using keeps
the actors’ mental states logically consistent.

After the execution of the take action, we use the
goal-directed search to find an action trace to satisfy a
condition, in this case that Moriarty believes that Sher-
lock believes that the murderer is Watson, i.e. we want a
sequence of actions such that Moriarty believes that she
framed Watson for the murder of the victim. When execut-
ing this line, our system will respond with the sequence
of actions kill(Moriarty, Victim, pistol),
put(Moriarty, pistol, Shed) and Moriarty
suspects find(Sherlock, pistol, Shed).
This last action demonstrates how our implementation
utilizes Baltag’s logic to represent that actions can just be
suspected to happen, even if they are not actually executed.
The story fragment we created thus has Moriarty first pick
up the pistol, kill the victim with it, and then place it in
the shed, which is owned by Watson. Moriarty then thinks
that Sherlock will find the gun in the shed, causing him
to suspect Watson of the murder. This last step may seem
surprising, since the only effect of the find action is
that Sherlock believes that the gun owner is the owner of
the location where he found the gun. However, Sherlock
also knows that a kill action happened previously and
will automatically eliminate previously established worlds
that have turned out to be inconsistent, such as the world
in which the kill action was performed by someone
other than the gun owner. After the system has found an

action sequence that satisfies the goal condition, it will
also execute these actions, resulting in a new state. We can
then execute more actions, or perform further goal-directed
searches, or use any of the query or print-capabilities of
our system. In this example, we first print the state of the
world. The parts of the output of this operation that pertain
to Sherlock’s and Moriarty’s mental state can be seen in
figure 2. As can be seen, Moriarty only considers one world
possible, in which she is the murderer (to keep the output
more concise, the system does not display the appearances
of this world, i.e. her beliefs about beliefs can not be seen
in this output.) We can also see that Sherlock still considers
two worlds possible: One in which Moriarty is the murderer
and one in which it is Watson. This is because the action of
Sherlock finding the pistol was only suspected by Moriarty
but has not actually happened (yet). In a story generation
setting, it would be up to the author to now have Sherlock
actually find the gun (perhaps by formulating a goal that
states that Sherlock should suspect Watson), or perform a
completely different action/pursue a different goal. Finally,
because parsing the state printed in this way can get really
cumbersome, we can also just query it. The query shown at
the end of listing 4 asks whether or not Sherlock believes
that Watson is the murderer. As we just showed, Sherlock
considers that possible in one world, but not in all worlds
(because he still considers the possibility that Moriarty is
the murderer), and therefore the query will be answered
with False.

While this example was kept short to demonstrate the ca-
pabilities of our system, there are several ways in which it
could be expanded upon. While we only provided 4 different
actions, each of which had a clear purpose in our example,
the modular nature of this approach allows domain authors
to define a whole range of possibilities for deception, such
as Moriarty luring Watson to the scene of the murder, or
planting false DNA at the scene. The goal of “Moriarty be-
lieves that Sherlock believes that Watson is the murderer”
then merely serves as a landmark that all detective stories
must contain, but the exact way of achieving it is up to the
system.
compare(d: Detective, s: Suspect, v: Victim)
{

public (d) if (fingerprints(location(v))
== s)

{
suspect (d) murderer(v) == s

}
else
{

suspect (d) murderer(v) != s
}

}

Listing 5: Comparing fingerprints with a suspect’s as an
epistemic action

Furthermore, other popular investigative actions, like
dusting for fingerprints can be modeled in such a way that
Sherlock can rule out suspects once he manages to compare
their fingerprints to the ones at the scene, for example by us-
ing the compare action shown in Figure 5. In this example,

188

The world is now:
Truth:
["at(pistol,Shed)",
"gunowner(pistol,Moriarty)",
"murderer(Victim,Moriarty)",
"owner(Manor,Moriarty)",
"owner(Shed,Watson)"]

looks like:
Moriarty:

[["at(pistol,Shed)",
"gunowner(pistol,Moriarty)",
"murderer(Victim,Moriarty)",
"owner(Manor,Moriarty)",
"owner(Shed,Watson)"]]

Sherlock:
[["at(pistol,Shed)",
"gunowner(pistol,Moriarty)",
"murderer(Victim,Moriarty)",
"owner(Manor,Moriarty)",
"owner(Shed,Watson)"],

["at(pistol,Shed)",
"gunowner(pistol,Watson)",
"murderer(Victim,Watson)",
"owner(Manor,Moriarty)",
"owner(Shed,Watson)"]]

...

Figure 2: The epistemic state after the system found and ex-
ecuted an action sequence such that the provided condition
is satisfied. Note that only the appearance of the actual world
is printed, and not the appearance of that appearance etc.

the if statement is public to the detective, which means they
will know which branch is taken, i.e. after performing the
action they will know whether or not the fingerprints they
found belong to the suspect, and will subsequently believe
that they are the murderer in case of a match, or believe that
they are not the murderer otherwise.

Limitations and Future Work
While the logic we use as the basis for our system can ex-
press a wide range of relations between character’s beliefs, it
is not without limitations. One such limitation is illustrated
by The Star Wars example from the introduction. In this
scenario, Luke believed that his father was dead, i.e. in all
worlds that he considered possible his father was dead. How-
ever, when Darth Vader revealed that he is Luke’s father,
Luke then believed that his father was dead, Darth Vader was
his father and Darth Vader was alive, which caused a contra-
diction. When we use a naive encoding of the narrative, this
would leave him with no worlds that he would consider pos-
sible (and indeed, he uses the phrase “That’s impossible”).
This is not technically a limitation of the logic, but some-
thing that must be taken into consideration when modeling
narratives in it. One way to avoid it is to model the epistemic
effect that happened as consisting of two parts: First, Luke
increased his uncertainty by adding new worlds in which his

father was indeed alive and then he discards the worlds in
which his father is not Darth Vader. This approach has the
drawback that it requires a certain level of awareness of this
kind of accidental contradictions on part of the domain au-
thor. The other approach would be to explicitely model the
process of learning the identity of an unknown person such
that the properties of the unknown person are overwritten
with those of the identity, or more concretely, when Luke
learns that Darth Vader is his father, he also learns that his
father has all properties that Darth Vader has, including the
fact that he is alive, without regard for what he previously
believed about him.

The main limitations of our current system are all a con-
sequence of using breadth-first search. The story fragment
presented above can be found in less than one minute on
modern hardware, but longer stories, or stories with more
available actions will take significantly longer. Adding just
one more necessary step to the story extends the planning
process to several minutes. We also limited ourselves to one
level of suspicion to limit the branching factor accordingly.
However, actions defined in our system have well-defined
preconditions and effects because they compile to actions
as defined by Baltag (2002), for which a precondition func-
tion is defined in his paper. This function is actually a neces-
sity for the execution of the actions as well, and is therefore
already present in our implementation. Least-commitment
planning as described by Weld (1994) as an abstract pro-
cess requires atomic, deterministic actions, an omniscient
planner 4, and that no change of the world is external to
the plan. Our actions fulfill these requirements if care is
taken to avoid non-determinism, but while our implemen-
tation uses a (simplistic) search through state-space, using a
least-commitment plan-space search approach as described
in Weld’s article would make the search more efficient. The
main difference to the typical formulation of this approach is
that causal links can then also contain beliefs of characters.
Consider the detective example from above: The goal state
consists of a belief of an actor about another actor’s belief.
To find an action to fulfill this particular goal, the planner
needs to choose an action that has a belief about a belief as
an effect, and add that action’s preconditions to the agenda.
Furthermore, the idea of variable bindings as discussed in
the article also has a direct parallel in our language with
an action’s parameters and could make the planning process
even more efficient. The feasibility of this general idea has
already been demonstrated by Herzig et al. who show how to
use a different epistemic logic in a planning process (Herzig,
Lang, and Marquis 2003). The logic they are using does not
increase the theoretical complexity of the planning process,
which is already quite high in theory, while our approach is
more concerned with its application in practice.

Using such a planning formalism would bring our ap-
proach closer to current research in the area, since many
contemporary story generation systems are based on various
flavors of planning, as described earlier. It would then be
possible to combine a narrative planner, even a state-space

4Note that Weld calls this an omniscient agent, but the agent in
this case is the author or planner that performs the story generation

189

one like Glaive (Ware and Young 2014), with our action def-
inition language, and use epistemic actions rather than plain
PDDL actions. The benefit would be that many advances
made in classical planning, such as better heuristics, and
work on narrative planning in particular, such as work on
narrative diversity (Amos-Binks, Roberts, and Young 2016)
would be directly applicable. Additionally, this approach
would also enable a more detailed model of intentionality,
that is based on character beliefs about the achievability of
their goals.

Conclusion
We have presented how our work in modeling epistemic ac-
tions can be applied to the problem of story generation. Our
system enables the definition of Dynamic Epistemic Logic
actions in a syntactically concise way, and can be used to
apply a sequence of these actions to an initial state. We have
also described how our system provides the means to search
for a sequence of actions, or suspected actions, that satisfy a
goal condition. This capability mirrors how planning is used
for narrative generation, and we have showed a short ex-
ample of parts of a detective story in which the murderer
tries to frame another person for a murder. The goal in this
example is that the murderer believes that the detective be-
lieves that someone else is the murderer. We have presented
the execution trace that our system finds that includes ac-
tions performed by the murderer, as well as an action that
she merely suspects to happen, resulting in the desired goal
state. Finally, we have discussed how our system could be
integrated with planning approaches to benefit from current
research in the area.

References
Amos-Binks, A.; Roberts, D. L.; and Young, R. M. 2016.
Summarizing and comparing story plans. In OASIcs-
OpenAccess Series in Informatics, volume 53. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.
Baltag, A. 2002. A logic for suspicious players: Epistemic
actions and belief–updates in games. Bulletin of Economic
Research 54(1):1–45.
Bundy, A., and Wallen, L. 1984. Breadth-first search. In
Catalogue of Artificial Intelligence Tools. Springer. 13–13.
Cohen, P. R., and Levesque, H. J. 1990. Intention is choice
with commitment. Artificial intelligence 42(2-3):213–261.
Dehn, N. 1981. Story generation after TALE-SPIN. In
IJCAI, volume 81, 16–18.
Eger, M., and Martens, C. 2017. Practical specification of
belief manipulation in games. In Proceedings of the 13th
AAAI International Conference on Artificial Intelligence and
Interactive Digital Entertainment.
Eger, M.; Barot, C.; and Young, R. M. 2015. Merits of a
temporal modal logic for narrative discourse generation. In
Eighth Intelligent Narrative Technologies Workshop.
Hendler, J. A.; Tate, A.; and Drummond, M. 1990. AI plan-
ning: Systems and techniques. AI magazine 11(2):61.
Hendricks, V., and Symons, J. 2015. Epistemic logic. In
Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy.

Metaphysics Research Lab, Stanford University, fall 2015
edition.
Herzig, A.; Lang, J.; and Marquis, P. 2003. Action repre-
sentation and partially observable planning using epistemic
logic. In Proceedings of the 18th international joint confer-
ence on Artificial intelligence, 1067–1072. Morgan Kauf-
mann Publishers Inc.
Hintikka, J. 1962. Knowledge and belief: an introduction to
the logic of the two notions, volume 4. Cornell University
Press Ithaca.
Kripke, S. A. 1963. Semantical analysis of modal logic
i normal modal propositional calculi. Mathematical Logic
Quarterly 9(5-6):67–96.
Lucasfilm. 1980. Star Wars Episode V: The Empire Strikes
Back. [Movie].
Porteous, J., and Cavazza, M. 2009. Controlling narrative
generation with planning trajectories: the role of constraints.
In Joint International Conference on Interactive Digital Sto-
rytelling, 234–245. Springer.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research.
Teutenberg, J., and Porteous, J. 2015. Incorporating global
and local knowledge in intentional narrative planning. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 1539–1546. In-
ternational Foundation for Autonomous Agents and Multia-
gent Systems.
Van Ditmarsch, H.; van Der Hoek, W.; and Kooi, B. 2007.
Dynamic epistemic logic, volume 337. Springer Science &
Business Media.
Ware, S. G., and Young, R. M. 2011. CPOCL: A narrative
planner supporting conflict. In Proceedings of the 7th AAAI
International Conference on Artificial Intelligence and In-
teractive Digital Entertainment.
Ware, S. G., and Young, R. M. 2014. Glaive: A state-space
narrative planner supporting intentionality and conflict. In
AIIDE.
Weld, D. S. 1994. An introduction to least commitment
planning. AI magazine 15(4):27.

190

