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Abstract

In many cluster analysis applications, data can be com-
posed of a number of feature subsets where each is rep-
resented by a number of diverse mixture model-based
clusters. However, in most feature selection algorithms,
this kind of cluster structure has been less interesting
because they accounted for discovery of a single infor-
mative feature subset for clustering. In this study, we
attempt to reveal a feature partition comprising multi-
ple feature subsets, with each represented by a mixture
model-based cluster. Searching for the desired feature
partition is performed by utilizing a local search algo-
rithm based on a reversible jump Markov Chain Monte
Carlo technique.

Introduction

Clustering is a popular data analysis technique and widely
used in such application areas as data mining and bioinfor-
matics. To identify interesting patterns in the data, most
clustering algorithms deal with all features to represent data.
However, only a few features are often relevant to the clus-
tering results, so this requires selecting the proper subset of
features to represent the clusters. To improve the perfor-
mance of clustering algorithms, this feature selection tech-
nique has been an interesting problem in spite of the absence
of prior information (Sayes, Inza, and Larrañaga 2007). Pre-
vious feature selection approaches that have investigated ef-
ficient techniques to select relevant features for clustering
commonly assume that features are divided into two feature
subsets (Constantinopoulos, Titsias, and Likas 2006). How-
ever, the original feature vectors can consist of a number of
feature subsets, making these previous feature selection ap-
proaches unsuitable.

In this paper, we propose a novel approach to find a set of
the feature subsets based on the gaussian mixture model at
the same time. For each feature subset, the best-fit mixture
model to represent clusters is determined by maximizing
the entropy of the maximum likelihood estimates, achieved
via the deterministic annealing expectation maximization
(DAEM) algorithm. By collecting these feature subsets,
the desired feature partition is obtained. To avoid an un-
reasonable processing time when searching for the desired
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feature partition, the simulated annealing-based reversible
jump Markov Chain Monte Carlo technique (RJMCMC)
technique is utilized. Through some numerical examples,
we show that our approach is insensitive to the various ini-
tial feature partitions.

Mixture model-based clustering on the

partitioned feature subsets
Let X be a data matrix with N data objects, each of which
is represented by a D-dimensional feature vectors, v =
(v1, . . . , vd, . . . , vD). Given v, a partition of features V con-
sists of K disjoint nonempty subsets of features, denoted by
V = {Vk; k ∈ {1, . . . , K} and K ∈ {1, . . . , D}}, where
Vk is the kth subset of features. In particular,

⋃K
k=1 Vk = v

and Vk ∩ Vk′ = ∅, for any k′ ∈ {1, . . . , K} and k �= k′.
UVk

is a submatrix of X corresponding to Vk. Based on the
concept of mixture model-based clustering, our approach as-
sumes that all Vks are mutually independent and each UVk

lies in different gaussian mixture models with different mix-
ture components. Then, the log-likelihood function of X,
L(θ|X), can be expressed as L(θ|X) =

∑K
k=1 Lk(θk|UVk

).
The estimates maximizing Lk(θk|UVk

) for fixed Vk and Gk

can be usually achieved via the EM algorithm. For Vk, let
Z be missing variables, where Zkgn = 1 or 0 if the nth

object is assigned to CVkg or not. Then, the complete data
log-likelihood function is

Lk(θk|UVk
, Zk) =

N∑
n=1

log
Gk∑
g=1

Zkgnpkgφ(UVkn; θkg). (1)

where θk = (θk1, . . . , θkg, . . . , θkGk
). θkg and φ(UVkn|θkg)

are the parameter values and the gaussian probability density
function of the gth cluster, respectively.

Starting with an initial parameter values θ
(0)
k , the EM al-

gorithm alternates the E-step and the M-step to update θk. In
the ith E-step, the conditional expectation of the complete
data log-likelihood, called the Q function, is computed:

Q(θk, θ
(i)
k ) = E[Lk(θk|UVk

, Zk)|UVk
; θ(i)

k ]. (2)

In the M-step, new parameter estimates, θ
(i+1)
k , maximizing

Q(θk, θ
(i)
k ) are calculated. This process stops when a con-

vergence condition is satisfied (Theodoridis and Koutroum-
bas 2006).
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To mitigate the local maxima problem of the EM algo-
rithm due to the monotonic convergence property, one can
consider utilizing the deterministic annealing EM (DAEM)
algorithm that uses a modified log-likelihood including the
“thermodynamic free energy” parameter β (0 < β < 1)
(Theodoridis and Koutroumbas 2006). Specifically, the
DAEM algorithm starts with a small initial β, which is close
to 0. Then, until β becomes 1, the DAEM algorithm per-
forms the E and M steps by gradually increasing β to obtain
a better local (and possibly global) maximum.

The estimated model can vary depending on the values of
the parameters, so an appropriate model amongst many can-
didate models should be selected. One natural way for this
problem is to choose a model which is the most similar to the
“true” model. For measuring the similarity between the true
model and the estimated model, it is a good choice to uti-
lize the Akaike Information Criterion (AIC), a well-known
model selection method based on estimating the Kullback-
Leibler (KL) divergence. In the model selection process, an
estimated model is regarded as the best fitted model when
the score of AIC is minimized. For the given Vk, AIC(Vk)
is denoted by

AIC(Vk) = −2 × Lk(θ̂k|Uk) + 2λk, (3)

where Lk(θ̂k|Uk) is the maximum log-likelihood, and λk is
the number of parameters θ̂k. By aggregating AIC(Vk)s,
feature partition consisting of multiple feature blocks where
each can be expressed by the best-fit mixture model for clus-
tering can be obtained. Accordingly, the AIC for V , used for
an objective function in our approach, can be expressed by:

J(X,V, θ) =
K∑

k=1

AIC(Vk). (4)

Searching for the feature partition minimizing the objec-
tive function (4) through exhaustive search is quite challeng-
ing because the number of all possible partitions for a fixed
number of features grows hyper-exponentially. Moreover,
for each feature subset Vk in a given feature partition V , the
model selection process as well as the mixture model-based
clustering via the DAEM algorithm aggravate the prohibitive
computational complexity.

For such a combinatorial optimization problem, we at-
tempt to search the desired feature partition V∗ by using a
local search algorithm, called the biased random walk al-
gorithm (Booth, Casella, and Hobert 2008). However, this
algorithm has several drawbacks such as the relative narrow
search region at each state and/or a local maxima problem.
This problem can be overcome by embedding another an-
nealing process, called the Simulated Annealing (SA) tech-
nique, with the biased random walk algorithm. In SA, the
temperature parameter T (T > 0) represents the degree of
random transition between states, meaning that a candidate
state tends to be accepted at a high temperature. Our search
algorithm starts with the initial feature partition V(0) and the
initial temperature parameter T (0) set to a high value. Until
the final state becomes stable, when T → 0, this search al-
gorithm explores V∗ by gradually decreasing T . At the tth

state, a candidate feature partition V ′(t) is accepted by the
following probability γ′:

γ′ = min

[
1, α =

π(V ′(t))
π(V(t))

exp{T (t)}
]
, (5)

where T (t) = ρ × T (t−1), t ≥ 1, and ρ is a cooling rate,
ρ ∈ (0, 1). π(V) be a probability mass function related with
V .

Simulation and Discussion

Three synthetic datasets for experiments were generated on
the basis of the following parameters: K, Gks, V , pkgs,
μgds, and Σgds where g ∈ {1, . . . , Gk}, d ∈ {1, . . . , D},
and k ∈ {1, . . . , K}. For V , Vk is composed of a different
number of CVkg and its corresponding pkg . Each Xn lies in
a gaussian distribution corresponding to μkg and Σkg . For
example, the 1st dataset contains three feature subsets: V1,
V2, and V3. Each Vk has 3, 2, and 1 mixture components,
respectively. The other datasets have different shapes and
more complex structures than the 1st dataset. In particular,
the 2nd dataset has a checkerboard structure.

To cover the overall cases for each dataset, we used 5 dif-
ferent initial partition V(0)s. Specifically, each Vk in 1) is a
singleton feature subset, V(0) of 2) is a feature subset with
all features, and the remaining three V(0)s were randomly
generated. To support enough randomness, T (0) = 400.0
and ρ = 0.997. For the DAEM algorithm, the β(0) = 4.0
and β(i) = β(i−1) × 0.998. Through the simulation results,
our search method demonstrated insensitivity to the various
initial feature partitions by showing successful convergence
to the minimum score of the objective function and the pa-
rameter estimates near the true parameter values.

Our method can be useful in various application areas.
For example, in Bioinformatics, gene expression data con-
sisting of genes (column) and experimental conditions (row)
can be expressed by multiple gene groups where each corre-
sponds to a number of different condition clusters across the
above diverse gene subsets. Relevant experiments in various
application areas are currently in progress.
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