Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Heuristic Sequencing Crossover: Integrating Problem
Dependent Heuristic Knowledge into a Genetic Algorithm

Vincent A. Cicirello
Computer Science and Information Systems
Richard Stockton College
Pomona, NJ 08240

Abstract

Dispatch scheduling policies offer a computationally inex-
pensive approach to many scheduling problems as an alter-
native to more processor intensive search algorithms. They
are especially useful in dynamic situations where problem
solving may be temporally constrained. However, dispatch
heuristics have also been effectively used for guidance within
more intensive search algorithms, expanding their applica-
bility well beyond simple myopic job or task selection. In
this paper, we present a new crossover operator for ge-
netic algorithms (GA) where a permutation representation
is employed. Our new operator directly integrates problem-
dependent knowledge in the form of a dispatch scheduling
policy into the crossover step of a GA which is usually a
problem-independent recombination. Our novel crossover
operator, Heuristic Sequencing Crossover (HeurX), recom-
bines elements of M parents into a single child and is
specifically designed for steady-state GAs. We empirically
demonstrate its effectiveness on a strongly NP-Hard schedul-
ing problem known as Weighted Tardiness Scheduling with
Sequence-Dependent Setups. We compare our approach to a
generational GA using a problem-independent crossover op-
erator. We show the potential power of integrating problem-
dependent knowledge via a dispatch heuristic into what is tra-
ditionally a problem independent problem solver.

Introduction

Genetic Algorithms (GA) and other Evolutionary Computa-
tion algorithms are approaches to problem solving inspired
by natural evolutionary processes (Goldberg 1989). GAs are
widely used for solving combinatorial optimization prob-
lems. The key operators of the genetic search are known
as crossover and mutation and GAs are usually referred to
as population-based as the search maintains a population
of candidate solutions to the problem. Crossover opera-
tors recombine elements from pairs (usually) of individu-
als of the population into children that replace individuals
in the population. Mutation operators introduce small ran-
dom changes to individuals. Crossover and mutation oper-
ators are almost always problem independent operators that
require zero knowledge of the problem. The only problem
specific knowledge required by the typical GA is a fitness
function that is used to evaluate the quality of the members

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

14

of the population, and which is used in the selection operator
as the source of a metaphor for the survival of the fittest. The
more common type of GA is generational where the evo-
lutionary operators are iterated over a series of generations,
each generation comprised of children (some mutated) of the
fittest members of the previous generation. In this paper, we
actually employ what is known as a steady-state GA, which
differs from the generational model in that at each step a
small number of the least fit members of the population are
replaced by children of other members of the population.

Despite minimal knowledge of the problem to be solved,
GAs are often effective general problem solvers. One of
our objectives is to explore potential benefits of integrating
knowledge of the problem into a GA crossover operator. In
this paper, we introduce a crossover operator called Heuris-
tic Sequencing Crossover (HeurX). We define it in a problem
independent way. One of its inputs, however, is a heuris-
tic with problem dependent knowledge. HeurX treats the
heuristic as a black-box, enabling the design of a GA with
the typical structure that is disconnected from the applica-
tion, until provided with a fitness function, and in our case, a
heuristic. Additionally, HeurX is designed for GAs that use
the permutation representation and not for the more com-
monly employed bitstrings. The permutation representation
of a GA represents individuals in the population by a permu-
tation of elements and is particularly suitable for scheduling
problems where the task is to find an ordering over a set of
jobs or tasks to optimize some objective. The permutation
representation requires specialized operators, and there is an
extensive literature on problem independent crossover op-
erators for permutations (Oliver, Smith, and Holland 1987;
Davis 1985; Goldberg and Lingle 1985; Watson et al. 1998;
Moraglio and Poli 2005; Cicirello 2006; Ho and Chen 2000;
Starkweather et al. 1991).

In order to apply the HeurX operator within a GA to solve
a scheduling problem or some other combinatorial optimiza-
tion problem, we require a heuristic with knowledge of the
problem. For many scheduling problems, there exist what
are referred to as dispatch scheduling policies (Morton and
Pentico 1993). A dispatch policy is a type of heuristic most
useful in dynamic situations. Their intended application is
the myopic selection of a job or task to next process on a
machine. Each of the available jobs are evaluated by the dis-
patch policy and the job with highest evaluation is selected

and processed. If time is available, one can use a dispatch
policy to first sequence the jobs and then use a local search
to locally improve it. But if time is highly constrained, often
the dispatch policy is used to simply myopically select the
next job. Many of the available dispatch policies for com-
mon scheduling objectives were designed around human ex-
pert knowledge of the particular problem, and as such are a
source of problem specific heuristic knowledge. In this pa-
per, we will specifically use our HeurX operator to integrate
the problem dependent heuristic knowledge inherent in dis-
patch scheduling policies into a steady-state GA.

This is certainly not the first use of dispatch scheduling
policies to guide a more intensive search procedure. For ex-
ample, stochastic sampling search procedures search a ran-
domized neighborhood of a dispatch policy’s suggested so-
lution (Bresina 1996; Cicirello and Smith 2005). This type
of heuristic has also been used to guide backtracking search
in constrained optimization (Franck and Neumann 1996).
Applications of Ant Colony Optimization (ACO) (Dorigo
and Di Caro 1999) to scheduling problems also often use
dispatch heuristics for guidance. However, we believe that
our HeurX operator is the first GA crossover operator de-
signed to integrate dispatch scheduling policies into a GA.

To demonstrate the benefit of introducing problem de-
pendent knowledge into a GA crossover operator, we turn
to a problem known as Weighted Tardiness Scheduling
with Sequence-Dependent Setups, which is NP-Hard in the
strong sense (Garey and Johnson 1979). A particularly chal-
lenging aspect of the problem are the sequence-dependent
setup constraints, which greatly magnify the computational
hardness of the problem (Sen and Bagchi 1996). We empiri-
cally compare our steady-state GA using the HeurX operator
to one of the current best meta-heuristics for the problem,
a generational GA that uses the permutation crossover op-
erator Non-Wrapping Order Crossover (NWOX) (Cicirello
2006). We show that HeurX enables us to effectively inte-
grate problem dependent knowledge into a GA as compared
to using a problem independent crossover operator.

The Heuristic Sequencing Crossover Operator

The Heuristic Sequencing Crossover (HeurX) operator is
an adaptation of the general procedure usually employed to
schedule a set of jobs via dispatch policy. Before presenting
the HeurX operator, we first briefly summarize the typical
application of a dispatch policy. Figure 1 provides pseu-
docode for a simple dispatch scheduling procedure. A dis-
patch scheduling procedure iteratively selects the job from
the set of remaining jobs .J that is most highly valued by the
dispatch heuristic H. This job is placed in the next available
position in the sequence. One can view the dispatch heuris-
tic H as a heuristic approximation of the priority of the job.
Jobs with high values of the dispatch heuristic are believed
by the heuristic to be most critical to schedule next.

Figure 2 provides pseudocode for the Heuristic Sequenc-
ing Crossover (HeurX) operator. In addition to the set of
elements J (e.g., jobs in a scheduling problem) that we need
to sequence and a dispatch heuristic H, the HeurX opera-
tor also takes as input a set P of parent permutations. Each
p € P is a permutation of the elements of J. Although

15

Dispatch Scheduling
Inputs: An unordered set of elements J.
A dispatch heuristic H.

Outputs: An ordered sequence S.
S—10
while J # @ do

next «— arg max;c s H(j)

Add next to the end of S

J «—— J — next
end

Figure 1: Sequencing a set of jobs via a dispatch policy.

The HeurX Operator
Inputs: An unordered set of elements J.
A dispatch heuristic H.
A set P of M parent permutations.
Each p € P is a permutation of the elements of .J.
Outputs: A child permutation C.
C—190
while J # @ do
eligible «—— ()
for each p € P do
e «— find first element of p that is still in J
eligible «— eligible U {e}
end
next «— argmax; ,jioiple H(j)
Add next to the end of C
J «— J — next
end

Figure 2: The HeurX operator: pseudocode.

most GA crossover operators recombine elements of 2 par-
ents, the HeurX operator can be given any number of parents
M > 2. Regardless of the number of parents M, the HeurX
operator produces a single child permutation C.

The HeurX operator constructs the child permutation sim-
ilar to the typical application of a dispatch policy. However,
prior to the selection of the next element to add to the child
sequence C', the HeurX operator uses the set of parents P
to form a restricted set of “eligible” elements, rather than
selecting from the entire set of remaining elements in J.
Specifically, the first element e in each of the M parents
that has not yet been added to the child C is added to a set of
“eligible” elements. The dispatch heuristic H is then used
to select an element from this smaller set.

Early in the construction of a child, HeurX uses the my-
opic dispatch policy to select from at most M jobs rather
than from all jobs. The set of eligible jobs can be smaller
than M if the next non-scheduled job is the same in more
than one parent. Many dispatch policies tend to be more
accurate in job selection toward the end when fewer jobs
remain. If a dispatch policy makes a poor selection, it is
more likely (in most cases) to be toward the beginning of
the sequence. If the job that is not really as important as the
heuristic believes it to be is not at the very beginning of any
of the parents, then HeurX will not place it at the beginning

A Steady-State GA Utilizing the HeurX Operator
Inputs: An unordered set of elements J.
A dispatch heuristic H.
Number of parents M to use during crossover.
The population size S.
The max number, Evals, of crossover operations.
The optimization objective, F', to minimize.
Optional: A local search L to apply to the children
produced during crossover.
Qutputs: The ordered sequence, MinS, with lowest value
of F(i) of all sequences 7 found by the search.
Population «—— S random permutations of .J
Min§ «— arg minpePopulation F(p)
for 7 from 1 to Evals do
parents «— M random members of Population
C «—— HeurX(J,H,parents)
Optional Step: Locally optimize C' using L.
Population «—
(Population — arg Max, population F(p))u{C}
if F(C) < F(MinS) then MinS «— C
end

Figure 3: Steady-state GA utilizing the HeurX operator.

of the child as it will not be in the eligible set of elements.
Later in the construction of the child, the number of re-
maining jobs begins to decline well below M, there is an in-
creasing chance that the eligible set will contain all or nearly
all of the remaining jobs. When this occurs, HeurX will re-
duce to dispatch scheduling. This is desirable given that dis-
patch policies are most accurate when there are fewer jobs
to schedule. The higher the number of parents M, the ear-
lier HeurX reduces to dispatch scheduling during child con-
struction. The lower the number of parents M, the more
the evolutionary processes of the GA affect the search. The
runtime complexity of the HeurX operator is O(M - |J|).

HeurX and a Steady-State Genetic Algorithm

Although there are likely to be other appropriate structures
for a GA that uses our HeurX operator, we recommend its
use in a steady-state GA. The property of the HeurX opera-
tor where a single child is produced from several (M) par-
ents does not lend itself well to the generational GA. In the
typical generational GA, after selection the members of the
population are paired. Some pairs undergo crossover pro-
ducing pairs of children to replace the parents. With the
HeurX operator, M parents produce 1 child, and thus does
not naturally map into the structure of a generational GA.
Instead, we use a steady-state model (Figure 3). We as-
sume we must minimize the objective F'. We begin with
S random permutations. We then perform Evals iterations,
where each iteration consists of the following. M parents
are selected randomly from the population with uniform
probability. The HeurX operator produces a single child C'
from those M parents. If desired, one can locally optimize C'
using a local search such as a hill climber. The final step of
an iteration replaces the worst individual (i.e., with largest F’
value) of the population with C'. Throughout, we keep track

16

of the best sequence (i.e., with minimum F' value).

The cost of an iteration is Q(M + M - |J| + log(S)) =
O(max(M - |J|,log(S))). If we store the population in a
heap, each of the M parent selections can be done in con-
stant time since they would be simple array accesses, and
both the removal of the worst member and addition of the
new child can be done in ()(log(S)). It is also possible to
decrease the constant factor of that term by combining the
remove worst and add child into a single operation. Specifi-
cally, one can replace the root of the heap (the worst member
of the population) with the newly constructed child, and then
execute a heapify on the root (see any algorithms book for
details of heapify, such as (Cormen, Leiserson, and Rivest
1990)). The alternative would be to perform a remove which
would involve replacing the root with the element in the last
position of the array used by the heap (one of the leaves)
and executing heapify on the root, followed by the addition
of the child to the heap involving placement of the child as
a leaf and then percolating it up the heap. The M - |J| term
is the cost of the call to HeurX. Unless the population size .S
is large, the dominant term is the cost of the call to HeurX,
making the cost of a single iteration of the GA O(M - |J|)
with the cost of the overall GA O(Evals - M - |J|).

Experimental Analysis
The Problem: Weighted Tardiness Scheduling

Weighted tardiness scheduling with sequence-dependent se-
tups consists of a set of jobs J = {jo,41,.-.,jn}. Each
job j has a weight w;, duedate d;, and process time p;. Fur-
thermore, s; ; is the setup time required immediately prior
to the start of processing job j if it follows job ¢. It is not
necessarily the case that s; ; = s;;. The 0-th “job” is the
start of the problem (py = 0, dg = 0, s;,0 = 0, wo = 0). Its
purpose is to specify the setup of each job if sequenced first.
The weighted tardiness objective is to minimize:

T= Zw]—Tj = ijmax(cj —d;,0),

jeJ jeJ

(D

where T} is the tardiness of job j; and c¢;, d; are the com-
pletion time and duedate of job j. The completion time is
the sum of the process times and setup times of all jobs that
come before j in the sequence plus that of j. If 7(j) is the
position of job j in the sequence, then ¢; is:

2)

cj = Pi + Sk.i-

i,keJm(i)<=n(j),7(i)=n(k)+1

Single-machine scheduling to optimize weighted tardi-
ness is NP-Hard even if setups are independent of job or-
dering (Morton and Pentico 1993). The challenge is greatly
magnified by the sequence-dependent setup constraints. Sen
and Bagchi discuss the challenge of sequence-dependent se-
tups (Sen and Bagchi 1996). Specifically, they discuss how
they induce a non-order-preserving property of the evalua-
tion function. At the time of their writing, exact solution
procedures such as A*, Branch-and-Bound, and their own
GREC (Sen and Bagchi 1996) for sequencing problems with
sequence-dependent setups were limited to instances with

no more than approximately 25-30 jobs, even for easier ob-
jective functions. Problem instances of larger size require
inexact solution procedures such as metaheuristics.

Applying Our Approach to the Problem

The first step in applying our GA with the HeurX opera-
tor to a problem is the identification of an appropriate dis-
patch scheduling policy. There are numerous dispatch poli-
cies available for the setup-free version of the weighted tar-
diness problem (Morton and Pentico 1993). There are far
fewer available for the variation that we consider consisting
of sequence-dependent setups. One of the strongest dispatch
policies available when sequence-dependent constraints are
involved is the Apparent Tardiness Cost with Setups (ATCS)
heuristic (Lee, Bhaskaran, and Pinedo 1997), defined as:

w; —p; —t,0)
ATCS;(t,1 :—]exp =]
S8 =2 exp —

~ max (d;

S1,5
kos),
3)

where ¢ is the current time (or the sum of the process and
setup times of jobs already sequenced); [is the index of the
job most recently added to the schedule; p is average pro-
cessing time of all jobs; and 5 is average setup time.

The k1 and ko are parameters that are automatically tuned
based on characteristics of the problem instance as follows.

|

where R is the duedate range factor which is an indica-
tor of how spread the duedates of the jobs are, and is de-

fined as: R = dac"i*d where dpayx, dmin are the max-

imum and minimummgﬁledates, and C|,. is an estimate of
the makespan (or completion time of the last job).

45+R ifR<O05

6.0 — 2R otherwise @

T
2\/77.

where 7 is the duedate tightness factor, defined by 7 = 1 —

[ix ; and 7 is the setup time severity factor, defined by n =
> The 7 is an indicator of how urgent the duedates of the
problem are and 7 is an indicator of how large an effect the
setup times can have on problem solving.

In their publication of the ATCS heuristic, Lee et al de-
scribe a simple local search that they recommend applying
to the solution given by ATCS (Lee, Bhaskaran, and Pinedo
1997). In our experimental results we consider two alter-
natives: using Lee et al’s local search as the optional local
search step of the algorithm of Figure 3, and not using that
optional local search.

Lee et al’s local search works as follows. Find the job that
contributes the most to the cost of the solution. If remov-
ing that job and reinserting it into an earlier position in the
sequence decreases the weighted tardiness of the solution,
then perform the removal of that job and reinsertion into the
point that decreases the cost the greatest. If there is no rein-
sertion point for that job that would decrease the cost of the
solution, then the local search is done. Otherwise, repeat.

ko &)

Diley

17

Tuning the Control Parameters

Before applying the HeurX operator and our Steady-State
GA to a new problem, we must determine values for the
control parameters. We must determine the number of par-
ents M to use and the size S of the population for the GA.
There is a trade-off with choosing values for each of these.
The computational cost of the HeurX operator grows lin-
early with M. If we double the number of parents M, then
we limit ourselves to the ability to execute half as many it-
erations of the GA. Additionally, the higher the value of M,
the more confidence we place on the knowledge encoded in
the dispatch heuristic. The lower the value of M, the closer
the algorithm gets to a random uninformed search.

The cost associated with increasing the size .S of the pop-
ulation is largely negligible (compared to increasing M).
Given our steady-state model, we are not iterating over the
entire population as a generational GA does. The removal
of the worst member of the population and insertion of the
newly formed child is inexpensive given our use of a heap—
logarithmic in S. In our preliminary parameter tuning ex-
periments, we considered population sizes into the 100,000s
with little effect on runtimes. However, large S does have
a time cost at the start of the GA. Before beginning the it-
erations of the GA, the initial random population must be
generated. This operation scales linearly with S. For longer
runs of the GA, this may be considered a minor point; how-
ever, for short runs, this ()(S) time initialization of the pop-
ulation may necessitate the use of a smaller population.

With these tradeoffs in mind, we set out to find a bal-
ance. We generated 36 random problem instances with 60
jobs each using the structural properties suggested by Lee
et al (Lee, Bhaskaran, and Pinedo 1997). This small set of
problem instances were only used for control parameter tun-
ing, and were not in any way used for our comparisons with
other approaches. Our parameter tuning method was mostly
automated and considered values for the number of parents
M in the range [2, 100] and values for the size S of the pop-
ulation in the range [100, 100000]. We focused our tuning of
the algorithm without the optional local search step.

During control parameter tuning, we discovered that the
choice of control parameters also depends on how long of a
search is planned. For example, longer single runs will stag-
nate if the population size is not sufficiently large. However,
if the population size is too large, then shorter runs are un-
able to effectively focus the search in promising areas. We
chose to tune the algorithm for short run lengths of approxi-
mately 2 seconds in length (on a Dell Dimension 8400 with
a 3.0 GHz Pentium 4 CPU and 1GB memory). We imple-
mented the HeurX operator and the steady state GA in Java
1.6. If additional computing time is available, we restart the
GA with a new random population.

The result of the control parameter tuning is as follows:
population size S = 14000, number of parents M = 59, and
approximately 1500 iterations before restarting a longer run.
Decreasing M allows us to execute more iterations in the
same length of time, but our tuning procedure showed lower
values of M to ineffectively utilize the heuristic’s guidance.
To effectively integrate the knowledge inherent in the dis-
patch policy, M cannot be set too low.

Table 1: Local search step vs no local search for short runs
of the GA with HeurX. %AB is average percentage devia-
tion from the best known solutions to the benchmarks. 95%
confidence intervals and T-Test results are shown.

With Local Without Local

%AB 0.255+0.034 0.488+0.079 < 1%10"18
Time 2.05 seconds 2.01 seconds

P-value

Experimental Results

We begin by comparing a couple variations of our approach:
with and without using the optional local search step, and
restarting a short run vs executing a single longer run. Then,
we compare to a generational-style GA using the permuta-
tion crossover operator NWOX, an algorithm that had found
several best known solutions to benchmarks.

In comparing our approach to others, we use a set of
benchmark instances (Cicirello and Smith 2005; Cicirello
2007). This set of benchmarks have been used by several
for a wide range of approaches, including GAs, simulated
annealers, ACO, truncated branch-and-bound, among oth-
ers. The set consists of 120 problem instances, 10 instances
from each of the 12 categories of Lee et al (Lee, Bhaskaran,
and Pinedo 1997). The benchmark set includes data on best
known solutions found by any approach so far.

The Benefits of the Optional Local Search Step: We first
report on the potential benefit from applying the optional
local search step described earlier. We begin by comparing:

o The steady-state GA with HeurX operator without the op-
tional local search step.

e The steady-state GA with HeurX operator using the sim-
ple (and fast) local search suggested by Lee et al in their
original presentation of the ATCS dispatch policy. No ad-
ditional tuning was performed for the local search version.

For each of these variations, we solve each of the bench-
mark problem instances 10 times providing us with 1200
data points for each version. The addition of the simple
local search step results in a marginal increase in CPU re-
quirements (from 2.01 seconds on average to 2.05 seconds).
With the rather restricted move set, this local search hits a
local optima in a relatively few number of operations.

Table 1 shows the results. %A B is the average percentage
deviation from the best known solutions to the benchmark
instances. The local search step produces an algorithm that
deviates from the best known solutions by approximately
25.5% on average compared to nearly 49% if we do not use
the optional local search step. This result is extremely sta-
tistically significant (P-value < 1 % 10718),

Restarting a Short Run vs Executing a Single Longer
Run: Next we consider the alternatives of restarting a
short run vs executing a single longer run. Both versions
use the optional local search step. We compare:

o Steady-state GA with HeurX operator and local search
step. Restart with new random population every 1500 it-
erations. We use 11 restarts to produce a run that requires
20.5 seconds of CPU time on average on our test machine.

18

Table 2: Restarting a short search vs running a single longer
search. %A B is average percentage deviation from the best
known solutions to the benchmarks. 95% confidence inter-
vals are shown as well as the result of a T-Test.

11 Short Restarts 1 Long Search ~ P-value
%AB 0.182+0.023 0.193 +£0.024 0.0018
Time 20.5 seconds 20.6 seconds

Table 3: Comparing the HeurX-GA with the NWOX-GA for
different length runs. %A B is average percentage deviation
from the best known solutions to the benchmarks. 95% con-
fidence intervals are shown as well as the result of a T-Test.

HeurX-GA NWOX-GA P-value
(1 short run) (5000 gens)
%AB 0.2554+0.034 0.291 £ 0.069 0.11
Time 2.05 seconds 2.389 seconds
HeurX-GA NWOX-GA P-value
(2 restarts) (10000 gens)
%AB 0.209 +£0.026 0.250 £ 0.059 0.04

Time 3.90 seconds 4.762 seconds

o Steady-state GA with HeurX operator and local search,
but retuned for a longer run length. We repeated the
tuning phase described earlier but for runs of approxi-
mately 20 seconds in length. The result is population size
S = 100000, number of parents M = 44, and 21000 iter-
ations to reach the desired run length on our test machine.
This results in a 20.6 second run on average.

Table 2 shows the results. Restarting a short search and
taking the best solution across restarts is found to outperform
a single longer search, deviating from the best known solu-
tions to the benchmarks by 18.2% on average as compared
to 19.3% for the single longer run (P-value of 0.0018).

Comparison to a Generational GA: We now compare
our approach to one of the current best performing meta-
heuristics for the problem. We compare:

e HeurX-GA: Our steady-state GA using the HeurX opera-
tor and optional local search step. Every 1500 iterations,
we restart with a new random population. We consider
different length runs in terms of number of restarts.

e NWOX-GA: A genetic algorithm (generational model)
using a permutation representation and the permuta-
tion crossover known as Non-Wrapping Order Crossover
(NWOX) (Cicirello 2006). This GA previously had found
several of the best known solutions to the benchmarks.

Table 3 shows a comparison of our GA with the HeurX
operator to NWOX-GA for two different length runs.! Tim-
ing was done on the same computer architecture for both al-
gorithms. We compare a single short run of our HeurX-GA
to a 5000 generation run of NWOX-GA (slightly longer in

'The %AB for NWOX-GA have been updated to reflect im-
provements to best knowns since its publication (Cicirello 2006).

Table 4: New Best Known Solutions Found by HeurX-GA
for Benchmark Instances. Column P is the problem instance
number.

P Old New P Old New
8 298 201 97 418995 418753
11 5088 5037 99 374607 372786
13 6147 6092 102 495094 494019
17 387 271 111 348796 347882
19 239 60 120 399700 399383

CPU time than the run of HeurX-GA). HeurX-GA deviates
on average from the best knowns by 25.5% as compared to
approximately 29% for NWOX-GA. Although an improve-
ment, this result is not statistically significant (P-value 0.11).

However, if we increase the run length, comparing 2
restarts of HeurX-GA (3.9 CPU seconds) to a 10000 gen-
eration run of NWOX-GA (4.8 CPU seconds), we see that
HeurX-GA begins outperforming the GA with problem-
independent operators despite using less compute time (sig-
nificant with P-value of 0.04). HeurX-GA deviates from the
best known solutions by around 21% for this run length as
compared to 25% for NWOX-GA.

Conclusions

In this paper, we demonstrated the potential benefits of inte-
grating problem specific knowledge in the form of a dispatch
scheduling policy into a genetic algorithm. Specifically, we
presented a novel crossover operator, Heuristic Sequencing
Crossover, designed to enable this integration of dispatch
scheduling with a GA. A steady-state GA using HeurX was
presented and we validated its effectiveness on an NP-Hard
scheduling problem. Our approach applied to a sequence-
dependent setup version of the weighted tardiness schedul-
ing problem is competitive with some of the current best
metaheuristics for the problem. In particular, we showed
there to be an advantage over problem-independent meta-
heuristics for shorter length searches. This is perhaps due
to the dispatch policy helping to focus the search early on
a promising region, rather than requiring the search to first
narrow in on that region.

During the course of this study, the HeurX-GA was able
to improve upon the best known solutions to 10 of the bench-
mark instances. Table 4 provides the objective values for the
new best known solutions for those instances as well as the
old best known for comparison purposes.

References

Bresina, J. L. 1996. Heuristic-biased stochastic sampling.
In Proc of the 13th Nat Conf on Artificial Intelligence, 271—
278. AAAI Press.

Cicirello, V. A., and Smith, S. F. 2005. Enhancing stochas-
tic search performance by value-biased randomization of
heuristics. Journal of Heuristics 11(1):5-34.

Cicirello, V. A. 2006. Non-wrapping order crossover: An or-
der preserving crossover operator that respects absolute po-

19

sition. In Proc of the Genetic and Evolutionary Computation
Conf, 1125-1131. ACM Press.

Cicirello, V. A. 2007. The challenge of sequence-dependent
setups. In Proc of the ICAPS Workshop on Scheduling a
Scheduling Competition. AAAI Press.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. McGraw-Hill.

Davis, L. 1985. Applying adaptive algorithms to epistatic
domains. In Proc of the IJCAI, 162—-164.

Dorigo, M., and Di Caro, G. 1999. The ant colony optimiza-
tion meta-heuristic. In New Ideas in Optimization. McGraw-
Hill. 11-32.

Franck, B., and Neumann, K. 1996. Priority-rule meth-
ods for the resource-constrained project scheduling problem
with minimal and maximal time lags — an empirical analy-
sis. In The 5th Int Workshop on Project Management and
Scheduling, 88-91.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.

Goldberg, D. E., and Lingle, R. 1985. Alleles, loci, and the
traveling salesman problem. In Proc of the Ist Int Conf on
Genetic Algorithms, 154—159.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison Wesley.

Ho, S.-Y.,, and Chen, J.-H. 2000. A ga-based systematic
reasoning approach for solving traveling salesman problems
using an orthogonal array crossover. In HPC ’00: Proc of
the The 4th Int Conf on High-Performance Computing in the
Asia-Pacific Region, 659—663.

Lee, Y. H.; Bhaskaran, K.; and Pinedo, M. 1997. A heuris-
tic to minimize the total weighted tardiness with sequence-
dependent setups. IIE Transactions 29:45-52.

Moraglio, A., and Poli, R. 2005. Topological crossover
for the permutation representation. In Workshop Program
of the Genetic and Evolutionary Computation Conference,
332-338. ACM Press.

Morton, T. E., and Pentico, D. W. 1993. Heuristic Schedul-
ing Systems: With Applications to Production Systems and
Project Management. John Wiley and Sons.

Oliver, I. M.; Smith, D. J.; and Holland, J. R. C. 1987.
A study of permutation crossover operators on the traveling
salesman problem. In Proc of the 2nd Int Conf on Genetic
Algorithms, 224-230. Lawrence Erlbaum Associates, Inc.

Sen, A. K., and Bagchi, A. 1996. Graph search methods for
non-order-preserving evaluation functions: Applications to
job sequencing problems. Artificial Intelligence 86:43-73.

Starkweather, T.; McDaniel, S.; Mathias, K.; Whitley, C.;
and Whitley, D. 1991. A comparative study of genetic se-
quencing operators. In Proc of the 4th Int Conf on Genetic
Algorithms, 69-76.

Watson, J.-P.; Ross, C.; Eisele, V.; Denton, J.; Bins, J.;
Guerra, C.; Whitley, L. D.; and Howe, A. E. 1998. The
traveling salesrep problem, edge assembly crossover, and 2-
opt. In Proc of the 5th Int Conf on Parallel Problem Solving
from Nature, 823—834. Springer-Verlag.

