
Fast Discovery of Relevant Subgroup Patterns

Florian Lemmerich and Mathias Rohlfs and Martin Atzmueller
University of Würzburg,

Department of Computer Science VI
Am Hubland, 97074 Würzburg, Germany

{lemmerich, rohlfs, atzmueller}@informatik.uni-wuerzburg.de

Abstract

Subgroup discovery is a prominent data mining method for
discovering local patterns. Since often a set of very simi-
lar, overlapping subgroup patterns is retrieved, efficient meth-
ods for extracting a set of relevant subgroups are required.
This paper presents a novel algorithm based on a vertical
data structure, that not only discovers interesting subgroups
quickly, but also integrates efficient filtering of patterns, that
are considered irrelevant due to their overlap. Additionally,
we show how the algorithm can be easily applied in a dis-
tributed setting. Finally, we provide an evaluation of the pre-
sented approach using representative data sets.

Introduction
Subgroup discovery is a data mining technique that focuses
on finding parts of a dataset, that show an interesting be-
havior with respect to a specified concept of interest. In the
medical domain for example, we could be interested in dis-
covering subgroups of patients that show a high deviation
of the diagnosis gallstones compared to the total population,
i.e., a higher or lower risk of developing gallstones. Similar
to the rule body of association rules, subgroups are usually
described by a conjunction of attribute-value pairs; the con-
cept of interest can then be regarded as the rule head. Results
of subgroups can be used for both, immediate presentation
of the obtained knowledge to domain experts or to build any
predictive global model, e.g., for classification.

Since subgroup discovery is a non-covering approach, in
real-world applications often a set of very similar (and over-
lapping) subgroups is retrieved by a typical automatic k-best
discovery task. This can cause a decreased interestingness of
the k-best set of patterns, but also a loss of information since
further potentially interesting and more diverse subgroups
patterns are suppressed and hidden from the user. For an
effective approach, a compact set of relevant subgroup pat-
terns needs to be identified efficiently. However, as most
state-of-the-art discovery algorithms do not integrate a filter
for overlapping subgroups, either an inefficient check needs
to be incorporated, or the filtering has to be applied in sep-
arate post-processing step. This can result in a massive re-
duction of the discovered patterns.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we therefore introduce the novel BSD al-
gorithm, that is tailored to the task of discovering relevant
subgroup patterns. An efficient data structure and advanced
pruning strategies enable a fast examination of the search
space. Additionally, the utilized vertical data structure al-
lows for a very efficient detection of subgroup descriptions,
that due to their overlap are irrelevant to each other. Thus,
by suppressing such patterns a final set of relevant patterns
can be identified. Furthermore, we present an extension of
this approach, that enables the parallelization of the search in
multiple processes in order to distribute the discovery effort
and to accomplish further gains in performance. A practi-
cal evaluation using data sets with varying data character-
istics and sizes from representative real-world applications
and from the well-known UCI-repository (Newman et al.
1998), shows the benefit of the presented approaches.

The rest of the paper is structured as follows: We first
summarize the basics of subgroup discovery and the han-
dling of (ir-)relevant patterns. Then, different approaches for
the efficient mining of those patterns, including a new spe-
cialized algorithm, that is, the bitset-based BSD algorithm,
are discussed. Furthermore, we present a parallelized adap-
tation of this algorithm. Next, we discuss related work. Af-
ter that, a comprehensive practical evaluation is given. The
paper concludes with a summary and interesting directions
for future research.

Preliminaries
In the following, we introduce the necessary notions and
give a brief overview on the task of subgroup discovery.
Then, we formally define irrelevant subgroup patterns.

Subgroup Discovery
Subgroup discovery is applied for finding relations between
a (dependent) target variable and a set of explaining (inde-
pendent) variables. Then, the goal is to describe subsets
of the data, that have the most unusual characteristics with
respect to the concept of interest given by the target vari-
able (Wrobel 1997).

For some basic notation, let ΩA denote the set of all at-
tributes. For each attribute a ∈ ΩA a range dom(a) of val-
ues is defined. Let CB be the case base (data set) containing
all available cases (instances). A case c ∈ CB is given by

428

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

the m-tuple c = ((a1 = v1), . . . , (am = vm)) of m = |ΩA|
attribute values, vi ∈ dom(ai) for each ai.
The subgroup description language specifies the individ-

uals belonging to the subgroup. For a commonly applied
single-relational propositional language a subgroup descrip-
tion can be defined as follows:
Definition 1 (Subgroup Description) A subgroup descrip-
tion sd(s) = {e1, . . . , ek} of the subgroup s is defined by
the conjunction of a set of selection expressions (selectors).
The individual selectors ei = (ai, Vi) are selections on do-
mains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai). We define ΩE

as the set of all selection expressions and Ωsd as the set of
all possible subgroup descriptions.

A subgroup s described by the subgroup description sd(s)
is given by all cases c ∈ CB covered by the subgroup de-
scription sd(s). A subgroup s′ is called a refinement of s, if
sd(s) ⊂ sd(s′).
A subgroup discovery task usually searches for the k best

subgroups according to a quality function, which measures
the interestingness of the subgroup. Typical quality crite-
ria include the difference in the distribution of the target
variable concerning the subgroup and the general popula-
tion, and the subgroup size. While in principle any func-
tion can be used as quality function, usually they satisfy the
(monotony) axioms postulated in (Klösgen 1996). Essen-
tially, these imply, that larger subgroups and subgroups with
a higher frequency of the target concept are considered more
interesting with an increase in these parameters.
Definition 2 (Quality Function) A quality function
q : Ωsd × ΩE → R is used in order to evaluate a subgroup
description sd ∈ Ωsd given a target concept t ∈ ΩE , and to
rank the discovered subgroups during search.
For binary target variables, many important quality func-
tions can be specified in the form

qa = na(p − p0), a ∈ [0; 1]

where p is the relative frequency of the target variable in the
subgroup, p0 is the relative frequency of the target variable
in the total population, and n denotes the size of the sub-
group. a is a parameter, that trades off the increase in the
target share p− p0 vs. the generality n of the subgroup. For
a = 1, for example, this results in the quality function of
Piatetsky-Shapiro qPS , while for a = 0 the resulting func-
tions is order equivalent to the relative gain function qRG.
For this family of functions an optimistic estimate of a

subgroup s can be specified, cf. (Grosskreutz, Rüping,
and Wrobel 2008; Atzmueller and Lemmerich 2009). This
approximation describes an upper boundary for the quality,
that any refinement of s can have. These boundaries can then
be utilized in exhaustive search algorithms to prune (large)
parts of the search space while maintaining the optimality of
the search.

Irrelevant Patterns
The result of subgroup discovery is a set of subgroups. Since
subgroups can overlap, relevancy analysis is essential in or-
der to identify a compact but comprehensive set of sub-
groups. We consider a subgroup s as more relevant with

respect to another subgroup s′, if it covers all positive exam-
ples of s′, but no negative examples, that are not covered by
s′ as well. Formally s′ is irrelevant with respect to s, if and
only if

TP(s′) ⊆ TP(s) and FP(s) ⊆ FP(s′),

where TP(s) = {c ∈ s|t(c) = true} is the set of positive
examples in the subgroup s and FP(s) = s\TP(s) the set
of negative examples in s. If s′ is irrelevant with respect to
s, then the quality of a subgroup s′ is lower or equal to the
quality of subgroup s for any quality function satisfying the
axioms postulated in (Klösgen 1996).

Filtering out irrelevant subgroups has been successfully
applied in practical applications, cf. (Garriga, Kralj, and
Lavrač 2008), and can be considered as a standard option
for subgroup discovery.

Efficient Vertical Subgroup Discovery
In the following section we present strategies for the efficient
mining of the best k relevant subgroups.

Naive Subgroup Filtering 1:
Postprocessing
The simplest filtering approach requires the application of
a standard (exhaustive) discovery algorithm, e.g., the SD-
Map* (Atzmueller and Lemmerich 2009) or the DpSub-
group algorithm (Grosskreutz, Rüping, and Wrobel 2008),
without incorporating adaptations. Then, any irrelevant sub-
groups can be removed in a separate postprocessing step.
While this procedure allows for a relatively fast mining pro-
cess, the size of the result set is rather unpredictable, as
the number of irrelevant, filtered patterns is dataset depen-
dent. As shown in the evaluation section, it can vary from
few single subgroups to the vast majority of the result set.
Therefore, to find the set of the best k relevant subgroups, a
very large set of subgroups must be retrieved by the search-
algorithm, thus limiting the pruning possibilities of the ap-
plied methods.

Naive Subgroup Filtering 2:
During Search
To avoid a potentially massive reduction of the size of the
result set during postprocessing, a relevancy-check can be
included into the search algorithm. Thus, whenever a sub-
group s is added to the result set S, it is checked, if s is
irrelevant to any subgroup s′ ∈ S. If this is not the case, the
subgroup s can be added to the set S. Afterwards for any
subgroup s′′ ∈ S it is checked, if s′′ is covered by s and
thus can be removed. Please notice, that by doing so more
than one subgroup can be removed from the set, while only
one is added. However, in contrast to the postprocessing ap-
proach the resulting reduction of the set size is in practice
very limited, so emerging problems can be avoided in most
cases by only a slight increase of the result set size.

The naive approach requires one pass over the database
for each such check. Thus, the needed time to check for
irrelevant patterns can easily exceed the time needed for the
regular subgroup search by far.

429

A Bitset-based Subgroup Discovery Algorithm
Checking each possible coverage of subgroups in a separate
database pass is obviously a very time consuming task. To
speed up this process we propose a new vertical subgroup
mining algorithm, which is tailored to the task of finding
relevant subgroups. It combines an efficient vertical bit-
set based (vectors of zeros and ones) representation of the
needed information with advanced pruning strategies and an
efficient relevancy check. Bitsets are implemented very time
and memory efficient in most programming languages, in-
cluding logical operations like OR/AND.

Algorithm 1 function bsd
Require:

selcond: List of conditioned selectors,
selrel: List of relevant selectors,
ccondPos: Bitset of positive instances for selcond

ccondNeg: Bitset of negative instances for selcond

depth: Current search depth,
res: The result set of the best k found subgroups

Ensure:
res as a set of the best k relevant subgroups

1: newSelrel:= new List()
2: for all Selector scurr in selrel do
3: ccurrPos= ccondPos AND(scurr.bitsetPos)
4: tp = ccurrPos.cardinality()
5: if optEstimate(tp) > res.getMinQuality() then
6: ccurrNeg= ccondNeg AND(scurr.bitsetNeg)
7: n = tp + ccurrNeg .cardinality()
8: newSelrel.add(scurr)
9: scurr.attach(ccurrPos, ccurrNeg , optEstimate(tp))

10: if quality(tp, n) > res.getMinQuality() then
11: r = checkRel(res, ccurrPos, ccurrNeg)
12: if r then
13: sg= createSubgroup(selcond, scurr)
14: res.add(sg, ccurrPos, ccurrNeg)
15: res.checkRelevancies(sg)
16: if res.size > k then
17: result.removeLowestQualitySubgroup()
18: sort (newSelrel)
19: if depth < MAXDEPTH then
20: for all Selector s: newSelrel do
21: if s.optEstimate > res.getMinQuality() then
22: newSelrel(s)
23: selcond.add(s)
24: cnew= getCurrentBitSetFor(s)
25: bsd (selcond+ s, newSelrel, s.getPositives(),

s.getNegatives(), depth + 1, res)

The bitset based subgroup discovery algorithm (BSD)
for exhaustive mining of relevant sets of subgroups uses
a branch-and-bound strategy, where a conditioned search
space is mined recursively, similar to the SD-Map* (Atz-
mueller and Lemmerich 2009) or the DpSubgroup algo-
rithm, e.g., (Grosskreutz, Rüping, and Wrobel 2008).

In the initialization phase we construct two bitsets for
each selector involved in the subgroup discovery. The first
bitset represents the cases of the database with a positive

target value, the latter the cases with a negative target value.
Each bit represents a single case in the database, so the i-th
bit in each selectors positives bitset represents the i-th case in
the database labeled as positive. It is set to true, if (and only
if) the respective selector is true for the respective case. The
construction of these bitsets can be accomplished in one sin-
gle pass through the database. The rest of the algorithm can
operate on the generated data structures and does not need
further database passes. The memory consumption of the
bitsets is given by n · m bits for n instances in the database
and m selectors.

Figure 1: Example bitsets: C is constructed by logical AND
from A and B. C is not irrelevant to D, but irrelevant to E

After the initialization, the main recursive step is called
with no conditioned selectors and all selectors possibly rel-
evant for the search. In the current positive and negative
bitsets all bits are initially set to true. The main step is
shown in algorithm 1. It consists of two phases. During
phase one (lines 1 to 17) all possible refinements using the
possibly relevant selectors selrel are considered. For each of
these selectors the subgroup description, that consists of the
current conditioned selectors selcond and this new selector
scurr, is evaluated. Therefore, first the bitset representation
ccurrPos of all positive labeled cases, which fulfill this new
description, is computed by performing a logical AND op-
eration on the current positives bitset and the positives bitset
of the new selector (line 3). E.g., the left part of the row A
from our example table describes the positive cases for the
current conditioned selectors and the left part of row B the
positive cases for the selector scurr. Then the left part of row
C (computed by a logical AND of these bitsets) describes the
cases, that fullfil all current selectors as well as the currently
evaluated selector scurr. The cardinality of this bitset, i.e.,
the count of ones, determines the number of positive labeled
cases tp for the new subgroup description, therefore in our
example tp = 3. As the best possible refinement for a qual-
ity function qa is always given by the subset, that contains
exactly the positive cases, this count is sufficient to compute
an optimistic estimate for the current combination of selec-
tors (see above). We use this estimate in two ways:

First, only if the optimistic estimate is high enough, the
negatives bitset for the current selector combination is com-
puted. Then, using the counts of both, the positives and the
negatives bitset, the quality for this subgroup description,
i.e., the current combination of selectors can be computed.
In doing so, the negative cases only have to be considered
for promising selector combinations, leading to a signifi-
cant speedup, especially if the target concept is the minority
class. If the computed quality for this selector combination
is high enough, a relevancy check (see below) for this sub-

430

group is performed. If successful, the current description is
added to the globally defined result set, potentially replacing
the description with the lowest quality.

Second, similar to DpSubgroup, only if this optimistic es-
timate indicates, that there may be refinements of the current
subgroup with the new selector, that have a sufficient qual-
ity to be included in the overall result, then this selector is
added to the list of relevant selectors for the next level of
search (line 8), thus substantially reducing the considered
search space.

In a relevancy check, it is tested, if a subgroup s is irrel-
evant with respect to another subgroup s′. If the subgroup
is considered relevant, it is stored in the result set, together
with the bitset representations of the positive and negative
cases of the subgroup (line 14). Additionally, if any sub-
group already contained in the result set is irrelevant to the
new subgroup, then this subgroup is removed from the result
(line 15). These tests can be accomplished using the stored
bitset representations: A representation of all cases with a
positive target concept, that are contained in s, but not in
s′ can be computed by performing a logical AND-NOT be-
tween the positives bitset of s and s′. Analogously, a bitset
reflecting all cases labeled as negative, that are contained in
s′ and not in s can be computed by another AND-NOT op-
eration between the respective bitsets of negative cases. If
both bitsets resulting from these operations do not contain
any set bits, then s is irrelevant with respect to s′.
E.g, row C of our example is about to be added to the

result set, that currently contains the bitsets D, E. For a rele-
vancy check, first bitset D is considered. This bitset contains
one positive case (the last bit of the positives), but also one
negative case (the first bit of the negatives), that is not con-
tained by C. Therefore, whether C is irrelevant with respect
to D, nor D is irrelevant with respect to C. Next, we consider
the second entry of the result set, E. As all set bits of C in
the positives bitset are also set in the positives set of E, but
there is no set bit in the negatives bitset of E, that is not set
in the negatives of C as well, C is considered irrelevant with
respect to E. Thus, C will not be added to the result.

At the start of phase two, the list of relevant selectors is
sorted by their computed optimistic estimate (line 18). By
doing so, more promising paths in the search space are eval-
uated first, so more branches of the search tree can be pruned
earlier. Afterwards for each relevant selector this selector is
added to the list of conditioned selectors and the main proce-
dure of the algorithm is called recursively using the respec-
tive bitset and the conditioned selectors.

Distributed BSD
The algorithm shown above is a sequential, non-parallelized
algorithm. However, most CPUs that are in use today in-
clude several cores, which can process several computation
tasks simultaneously. Therefore, we present an adaptation
of the BSD algorithm, that can distribute the mining tasks
on all available cores. For the subgroup discovery task, par-
titioning of the case base is difficult, as subgroups can be
distributed arbitrarily in the case base and even very small
subgroups can be of high interest. Thus, our approach is
based on partitioning the search space in the following way:

In the second phase of the BSD algorithm, in which refine-
ments of the candidate subgroup with a sufficient optimistic
estimate are mined recursively, whenever the mining process
is about to invoke a recursive call, this call is assigned to any
idle processing unit, if available. Therefore, a branch of the
search tree is assigned to this processing unit. By doing so,
whenever there exist free processing resources, the current
process shares parts of its own workload with others. As
slower or slowed down processing units need more time to
finish their current task, they will be idle less often and thus
less subtasks will be given to such units. Thus, the load of
the different available processing units will be automatically
balanced. To avoid simultaneous modifications of the result
set operations on this set must be synchronized.

Another issue is the detection of program termination.
Due to the limited space, we refer to (Mattern 1987) for fur-
ther information.

Related Work
For the subgroup discovery task several algorithms have
already been proposed, e.g., heuristic methods like CN2-
SD (Lavrac et al. 2004), and also exhaustive mining ap-
proaches, e.g., SD-Map (Atzmueller and Puppe 2006). As
an improvement, exhaustive search algorithms were pro-
posed recently, that incorporate pruning using tight opti-
mistic estimates in order to remove parts of the search space,
e.g., SD-Map* (Atzmueller and Lemmerich 2009) or Dp-
Subgroup (Grosskreutz, Rüping, and Wrobel 2008). The
general structure of the DpSubgroup algorithm shares some
similarity with the BSD algorithm, however, the underly-
ing data representation is completely different: DpSubgroup
is based on FP-Trees while BSD relies on a vertical, bitset
based data structure.

Vertical data representations have been proposed for other
data mining tasks, e.g., by (Zaki 1998). (Burdick, Calim-
lim, and Gehrke 2001) used a bitset representation for max-
imal frequent itemset mining.

Distributed algorithms in the context of frequent set min-
ing have been discussed, e.g., by (Aouad, Le-Khac, and
Kechadi 2007) or (Zaiane, El-Hajj, and Lu 2001). A dis-
tributed approach specialized for subgroup mining has been
described by (Wurst and Scholz 2006). In contrast to these
(fully) distributed approaches, the proposed method uses
shared memory for better scalability and reduced commu-
nication costs. The presented distributed approach provides
for a natural extension of the presented method focused on
the discovery of relevant subgroups to a distributed setting.

The issue of relevancy is a very important topic in ma-
chine learning and data mining. Lately, (Lavrac and Gam-
berger 2006) apply relevancy filtering for feature extrac-
tion/filtering. This approach was later extended by (Gar-
riga, Kralj, and Lavrač 2008), covering closed itemsets and
putting relevancy in context with supervised learning tech-
niques. (Cheng et al. 2008) use a sequential coverage ap-
proach for mining local patterns relevant for classification,
however the discovered patterns do not follow the formal
relevancy criterias.

The approach proposed in this paper provides both the ef-
ficient and effective discovery of relevant subgroup patterns.

431

To the best of the authors’ knowledge, up to now no exhaus-
tive specialized algorithm for subgroup discovery has been
proposed, that especially focuses on the mining of relevant
subgroups.

Evaluation
This section presents several empirical observations on the
described concepts and methods using data sets from the
UCI-repository, real world data and synthetic evaluation
data. The evaluation was performed with a variety of data
sets and different search depths. From the UCI-repository
of machine learning we used the datasets ‘credit-g’, ‘soy-
bean’and ‘mushroom’. Further, the approach was tested
with a large real world dataset. This dataset describes spam-
mers in a social network tagging system and consists of
more than 17.000 cases. Additionally, we used evaluation
data generated from a bayesian network about vehicle insur-
ance, that consists of 100.000 cases. As quality functions
for our experiments, we chose the Piatetsky-Shapiro func-
tion qPS and relative gain qRG, as they have most diverse
properties with respect to pruning of the search space.

Post-processing
First, we evaluated the impact of the post-processing ap-
proach to the task of finding relevant subgroup patterns.
To estimate the applicability of this method we utilized an
exhaustive subgroup discovery algorithm using the quality
function qPS on several data sets; we investigated, how
many subgroups remained in the result set after the filtering
process. The results are shown in Figure 2.

Figure 2: Number of irrelevant rules after an exhaustive
search for the 100 best rules, using different datasets and
maximum depth boundaries.

It is easy to see, that the number of irrelevant rules in the
result set is difficult to estimate a-priori, i.e., there are no
guarantees with respect to the size of the result set. In order
to obtain a minimal size of the result set after the filtering
process has been applied, a huge number of saved subgroup
descriptions would be needed. This indicates, that for many
problems filtering irrelevant subgroups in a post processing
step is not suitable and thus stresses the need of including a
relevancy filtering step into the search algorithm.

BSD Algorithm
In the next part of our evaluation we compared the run-
times of the BSD algorithm with the state-of-the art exhaus-
tive subgroup discovery algorithm SD-Map* with and with-
out filtering of irrelevant subgroups. SD-Map* is based on
FP-trees and also employs optimistic estimate pruning. For
the tests including a relevancy check naive filtering during

Figure 3: Runtimes (in s) of BSD and SD-Map* algorithms
with and without relevancy-checks using different data sets
(with a maximum search depth of 5).

Figure 4: Runtimes (in s) of BSD and SD-Map* algorithms
for different search depths in the vehicle dataset using the
qPS quality function with and without relevancy checks.

search was used for SD-Map*, thus both algorithms return
the same set of subgroups. The evaluation was done using
different datasets, and a maximum search depth of five. The
results are shown in Figure 3.

For the performance tests including a relevancy check,
SD-Map* with filtering of irrelevant subgroups needs or-
ders of magnitude more time than without filtering. In con-
trast, as the BSD-algorithm seemlessly integrates the detec-
tion of irrelevant patterns in the mining process, it shows
only a very slight runtime increase. Thus, in many tests
the overall performance of BSD is more than an order of
magnitude faster than the SD-Map* algorithm, if an online
relevancy check is enabled. Additionally, even without rel-
evancy checking the BSD algorithm showed runtimes com-
parable to SD-Map*, being slightly faster in all tested cases.

In another evaluation we examined the runtimes of the al-
gorithms for different maximum search depths. The results
are shown in Figure 4. It can be observed, that the BSD algo-
rithm especially excels at lower maximum search depth, but
shows a sharper increase of runtime at larger depths. Thus,
for tasks without relevancy check, BSD is outperformed by
SD-Map* at large maximum depths. We explain this by
the more elaborated pruning capabilities in SD-Map* uti-
lizing its more complex data representation, i.e., FP-Trees.
However, since many of the interesting subgroup descrip-
tions tend to be short, a maximum depth of about 5 or 6 can
be considered as sufficient for most practical problems. Of
course, for the tests with online filtering of irrelevant sub-
groups the BSD algorithm also shows an increase in run-
times, while it still outperforms SD-Map*.

Therefore, we regard the BSD algorithm as the best
choice when mining for relevant subgroups and propose to
consider it also for subgroup discovery without relevancy
checks for low and medium search depths.

432

Distributed BSD Algorithm
The benefit of the distributed BSD algorithm was evaluated
by a comparison with the serial variant of the algorithm with
the parallelized version using 4 CPU cores. Two exemplary
results are shown in Figure 5.

In general, for most tasks, e.g., the vehicle dataset, a large
performance gain is shown, reaching a speedup factor of up
to 3. For tasks with very small runtimes, e.g., the credit-
g dataset, the administrative overhead for organizing the
threads exceeds the gains of multiple processing units. How-
ever, the BSD algorithms runtime is very short (less than 1
second) in these cases anyway.

Figure 5: Runtimes (in s) of BSD using one (serial) and four
processing units (parallel). As quality functions qPS and
qRG were used. The maximum search depth was set to 5,
online relevancy-checks were applied.

Conclusions
In this paper, we have presented a novel subgroup discov-
ery algorithm, that seemlessly integrates filtering of irrele-
vant subgroups into the mining algorithm by utilizing a spe-
cialized vertical data structure. By using efficient pruning
strategies the algorithm outperforms the state-of-the-art al-
gorithms when mining with such a relevancy check and also
showed to be efficient for tasks without relevancy filtering,
especially at low search depths. Additionally, we presented
how the algorithm can be distributed on several processing
units.

For future work, we plan to extend the distributed algo-
rithm in a grid-like environment. Furthermore, suitable visu-
alization techniques for inspecting the set of relevant and the
(suppressed) set of irrelevant patterns are additional interest-
ing research directions; in that respect, clustering techniques
seem to be a viable option for inclusion.

Acknowledgements
This work has been partially supported by the German Re-
search Council (DFG) under grant Pu 129/8-2.

References
Aouad, L. M.; Le-Khac, N.-A.; and Kechadi, T. M. 2007.
Grid-based approach for distributed frequent itemsets min-
ing using dynamic workload management. In Proc. 2nd In-
ternational Conference on Advances in Information Tech-
nology (IAIT2007).
Atzmueller, M., and Lemmerich, F. 2009. Fast Subgroup
Discovery for Continuous Target Concepts. In Proc. 18th
International Symposium on Methodologies for Intelligent
Systems (ISMIS 2009), LNCS.

Atzmueller, M., and Puppe, F. 2006. SD-Map – A Fast Al-
gorithm for Exhaustive Subgroup Discovery. In Proc. 10th
European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2006), number 4213
in LNAI, 6–17. Berlin: Springer Verlag.
Burdick, D.; Calimlim, M.; and Gehrke, J. 2001. MAFIA:
A Maximal Frequent Itemset Algorithm for Transactional
Databases. In Proc. 17th International Conference on Data
Engineering (ICDE’01), 443–452.
Cheng, H.; Yan, X.; Han, J.; and Yu, P. S. 2008. Direct
discriminative pattern mining for effective classification. In
ICDE ’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, 169–178. Washington,
DC, USA: IEEE Computer Society.
Garriga, G. C.; Kralj, P.; and Lavrač, N. 2008. Closed Sets
for Labeled Data. J. Mach. Learn. Res. 9:559–580.
Grosskreutz, H.; Rüping, S.; andWrobel, S. 2008. Tight Op-
timistic Estimates for Fast Subgroup Discovery. In Proceed-
ings of the 2008 ECML-PKDD - Part I, 440–456. Berlin:
Springer Verlag.
Klösgen, W. 1996. Explora: A Multipattern and Multi-
strategy Discovery Assistant. In Fayyad, U. M.; Piatetsky-
Shapiro, G.; Smyth, P.; and Uthurusamy, R., eds., Advances
in Knowledge Discovery and Data Mining. AAAI Press.
249–271.
Lavrac, N., and Gamberger, D. 2006. Relevancy
in Constraint-based Subgroup Discovery. In Jean-
Francois Boulicaut, Luc de Raedt, H. M., ed., Constraint-
based Mining and Inductive Databases, volume 3848 of
LNCS. Berlin: Springer Verlag.
Lavrac, N.; Kavsek, B.; Flach, P.; and Todorovski, L. 2004.
Subgroup Discovery with CN2-SD. Journal of Machine
Learning Research 5:153–188.
Mattern, F. 1987. Algorithms for Distributed Termination
Detection. Distributed Computing 2(3):161–175.
Newman, D.; Hettich, S.; Blake, C.; and Merz, C.
1998. UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/∼mlearn/mlrepository.html.
Wrobel, S. 1997. An Algorithm for Multi-Relational Dis-
covery of Subgroups. In Proc. 1st European Symposium
on Principles of Data Mining and Knowledge Discovery
(PKDD-97), 78–87. Berlin: Springer Verlag.
Wurst, M., and Scholz, M. 2006. Distributed subgroup min-
ing. In Fürnkranz, J.; Scheffer, T.; and Spiliopoulou, M.,
eds., Proc. PKDD 2006, 10th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases,
volume 4213 of Lecture Notes in Computer Science, 421–
433. Springer.
Zaiane, O. R.; El-Hajj, M.; and Lu, P. 2001. Fast parallel
association rule mining without candidacy generation. In
Proc. 2001 IEEE Int. Conf. on Data Mining, 665–668.
Zaki, M. J. 1998. Efficient Enumeration of Frequent Se-
quences. In CIKM ’98: Proceedings of the seventh interna-
tional conference on Information and knowledge manage-
ment, 68–75. New York, NY, USA: ACM.

433

