Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Mining Actionable Patterns

P. Swapna Raj and Balaraman Ravindran
Department of Computer Science and Engineering
Indian Institute of Technology Madras
{pswapna,ravi} @cse.iitm.ac.in

Abstract

We propose a generic framework that uses utility in decision
making to drive the data mining process. We use concepts
from meta-learning and build on earlier work by Elovici and
Braha, that uses decision theory for formulating an utility
measure, to specialize the framework for classification tasks.
We show empirical validation of the approach on a simple
test domain.

Introduction

The primary motivation for the field of data mining is to
provide support for decision making by detecting useful pat-
terns in large volumes of data. The decisions that are made
based on the mined patterns are often crucial to the function-
ing of an organization or enterprise. We call such patterns
that support decision making as actionable patterns.

Most data mining algorithms and tools stop with mining
and delivery of patterns satisfying intrinsic measures (such
as accuracy, support) and ignore decision making with re-
spect to the pattern. While researchers have looked at mea-
suring the utility of discovered patterns in decision making,
there has not been much work on using such utility measures
for driving the mining process as such.

In our work we propose a framework for “closing the
loop”, i.e., using utility in decision making to drive the min-
ing process. We introduce extrinsic measure which evaluate
patterns with respect to the decisions made. Our goal is thus
to include decision making as a part of Knowledge Discov-
ery in Databases (KDD) process and come up with a general
architecture to measure pattern’s usefulness with respect to
the decision made.

Framework

In order to present our framework for mining actionable
patterns we look at mining and evaluation stages of KDD
process. Data mining stage tries to optimize some intrinsic
measure such as accuracy, while pattern evaluation evaluates
pattern for its actionabilty based on some decision theoretic
framework.

The most natural way to develop an architecture for min-
ing actionable pattern is to merge two stages into one. To

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

444

achieve this we need to develop a objective function that can
drive mining of patterns based on their utility in data min-
ing. Except in some cases this is not easy to achieve. In
most formulations of the evaluation stage the optimal deci-
sion is related to patterns mined via a complex optimization
procedure and no simple relationship exists to underlying
intrinsic measures employed in data mining stage.

Statistical machine learning algorithms used in data min-
ing consist of two stages : model selection and parameter
estimation. While model selection is typically done manu-
ally, many parameter estimation procedures operate by gra-
dient descent on an error/objective/likelihood function. But
given the complexity of the optimization problem in the de-
cision stage it is not usually possible to define a differen-
tiable objective function for the data mining stage to directly
optimize. Thus it is not tractable to drive the parameter es-
timation stage to produce actionable patterns within the ex-
isting class of data mining algorithms. Our approach is to
drive the model selection stage using the utility of patterns
in decision making. For this we use ideas from the field of
Meta-learning.

The field of meta-learning, or learning to learn refers to a
class of algorithms, that choose approriate classes of models
and hyper-parameters, in order to optimize some objective
function. This function is typically an intrinsic one, often
the same objective function as in the parameter estimation
phase. Meta-learning allows us to adjust the bias of the min-
ing algorithm. This in turn affects the performance of the
algorithm, since the patterns the algorithm detects is heav-
ily influenced by the bias of the algorithm. In our frame-
work we look at the utility in decision making as the perfor-
mance measure which is optimized using the meta-learning
approach.

We define the space of hyper-parameters, S that we will
modify using meta-learning, say, the number of neurons in
the hidden layer, and the learning rate. We then choose a
neighborhood structure NV, with N(5), S € S, denoting the
neighbors of a state S. The particular neighborhood struc-
ture that we adopt is a manhattan structure, in that we allow
only one hyper-parameter to change at a time, by a fixed
step size. We use the best-improvement strategy to search
the neighborhood. In order to speed up the process when the
neighborhood is large, we can employ a first-improvement
strategy, where in the first neighbor, in some arbitrary or-

Utility 1 Utility 2 Utility 3
Spam | Non-spam | Spam | Non-spam | Spam | Non-spam
Accept mail | -1000 300 -500 300 -500 300
Reject mail 400 -500 400 -1000 400 -500
Table 1: Utility Matrix
Utility 1 Utility 2 Utility 3
Experiment 1 Experiment 1 Experiment 1
Best utility | Avg utility | Best utility | Avg utility | Best utility | Avg utility
Before 263.30 204.53 264.85 181.49 273.15 269.31
After 266.19 264.02 266.76 234.26 275.10 272.97
Experiment 2 Experiment 2 Experiment 2
Before 266.42 214.01 265.82 217.32 276.06 241.142
After 266.42 262.87 265.82 245.72 276.77 273.66
Experiment 3 Experiment 3 Experiment 3
Before 263.43 259.85 245.47 236.58 275.03 260.39
After 269.09 266.34 245.47 242.64 275.03 261.82
Table 2: Best and Average utility
der, with a better evaluation than the current state is chosen. Utility 1 | Utdlity 2 | Utility 3
Since we only find local optima, we repeat the entire lo- Experiment 1 53.79 53.40 03.65
cal search procedure several times by picking different start Experiment2 | 48.84 49.03 02.00
states for the hyper-parameters. We finally use the hyper- Experiment3 | 50.60 52.37 03.74

parameter setting that gave us the best evaluation across all
repetitions.

Experiments

In order to empirically validate our architecture, we chose a
Spambase dataset from the UCI Machine Learning Repos-
itory which consists of 4601 instances (1813 Spam = 39.4
%) and 58 attributes (57 continuous, 1 nominal class label).
The class labels are spam(1) or non-spam(0). The actions
that can be taken by the decision-maker are either “accept
mail” or “reject mail”. The consequence of rejecting a spam
mail or accepting non-spam mail carries a certain reputation
cost that can be quantified.

The mining approach we considered is a feed forward
neural network (FFNN). We made this choice, since the
FFNN offered a plethora of hyper-parameters to tune. The
hyper-parameters used in experiment 1 : learning rate, num-
ber of hidden neurons and transfer function while in experi-
ment 2 : number of hidden neurons and transfer function and
in experiment 3 : number of hidden neurons and learning al-
gorithm. The range of the learning rate was between 0.01
and 0.8, with the step size of 0.01. The number of hidden
neurons could vary between 1 and 15, with a step size of 1.
The transfer function could be either a hyperbolic sigmoid or
a logarithmic sigmoid. The learning algorithms considered
were gradient descent without momentum or with a fixed
momentum term.

We employed the decision theoretic framework from
(Elovici and Braha 2003) to evaluate our trained classifiers.
We study the effect of different base utility functions (Ta-
ble 1) on our architecture and the results are tabulated in
Table 2. All numbers are averages over 10 meta-learning

445

Table 3: Average Performance

trials. Note that the higher the utility the greater the “ac-
tionability” of the patterns mined. We compute the best and
average utilities achieved before the local search and after
the local search procedure. The best “before” performance
quantifies the best among the 10 random hyper-parameter
settings. The best “after” performance quantifies the best
with the meta-learning architecture. It is not always the case
that we achieve the best after performance by starting at the
best before hyper-parameter state.

Average before and after performance for the different ex-
periments are also given in Table 2. These numbers tells
us that the average utility expected with the tuned hyper-
parameters is a lot higher than the randomly chosen ones.
Thus we would need a lot fewer learning trials to get to more
actionable patterns. The average gain in performance for
various utility functions are tabulated in Table 3.

In this framework we have used utility function to model
the trade-off in the decision making process. It is difficult
for the user to quantify the trade-off accurately. Hence one
may use less informative formulation such a reward function
as employed in (SwapnaRaj and Ravindran 2008).

References

Elovici, Y., and Braha, D. 2003. A decision-theoretic ap-
proach to data mining. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 33(1):42-51.

SwapnaRaj, P., and Ravindran, B. 2008. Personalized web-
page rendering system. In /4th International Conference on
Management of Data.

