

Python as a Vehicle for Teaching Natural Language Processing

Reva Freedman

Northern Illinois University
Department of Computer Science

DeKalb, IL 60115
rfreedman@niu.edu

Abstract
I have taught Introduction to Natural Language Processing
several times at Northern Illinois University. Since the
students are more interested in the Python code that holds
the assignments together than in the NLP content, over time
I have cut back on linguistic content and added to the
programming content. This year I renamed the course
“Introduction to NLP in Python” and spent the first few
weeks teaching Python from scratch. This decision has been
very successful. The syllabus interweaves Python topics,
core NLP topics, and essential computer science topics I
feel every student should learn before graduating. In this
paper I describe the motivation for teaching the course this
way, the syllabus and its rationale, and prospects for
expanding the course to two semesters.

Introduction

I have taught Introduction to Natural Language Processing
several times at Northern Illinois University. Since the
students are more interested in the Python code that holds
the assignments together than in the NLP content, over
time I have cut back on linguistic content and added to the
programming content. This year I renamed the course
“Introduction to NLP in Python” and spent the first few
weeks teaching Python from scratch. This decision has
been very successful.
 Although I had to remove some linguistic content to
make this change, it was all theoretical material: I did not
have to remove any material that was needed for a
programming assignment. Earlier versions of this course
that were more linguistics-oriented are described in
Freedman (2005, 2008).
 The syllabus interweaves Python topics, core NLP
topics, and essential computer science topics I feel every
student should learn before graduating. In this paper I
describe the motivation for teaching the course this way,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the syllabus and its rationale, and prospects for expanding
the course to two semesters.
 I chose Python because I like Python, because there is
excellent pedagogical software for teaching natural
language processing in Python with an accompanying
textbook (NLTK; Bird, Klein, and Loper 2009), and
because we didn’t already have a course in Python.
Additional advantages for programming in Python are that
it gives us another chance to teach good programming
style, and it enables us to give the students a tiny taste of
functional programming, which should also improve their
programming style and throughput.
 In this paper I describe my experience teaching NLP to
students with no previous background and the syllabus I
have developed as a result. An overview of the syllabus is
shown in Figure 1.

Student background

 Northern Illinois University is a large state university
located about 60 miles west of Chicago. NIU has a B.S.
program in computer science and a coursework oriented
M.S. Most undergraduate majors come from the suburbs of
Chicago or from small towns near the university. Some of
the graduate students come from a similar background, but
most are international students.
 For the majority of students, undergraduate and
graduate, the preferred career path is generally to obtain a
programming job in local industry, preferably in a hi-tech
area. Most undergraduates who take the course do so out
of a desire to do something different from their required
courses. Many of the graduate students are looking for a
course that does not require the prerequisites of their core
courses. The possibility of learning a new computer
language that might help them in the job market is a strong
draw. Some graduate students are also interested in
improving their programming skill by starting over in
another language.
 The following background information has influenced
the design of the course. The information is derived from

300

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

talking to prospective and actual students as well as from
several years of anonymous course evaluation forms from
Introduction to Artificial Intelligence and Introduction to
NLP.
 1. Motivation for taking the course. Students are taking
the course for fun or to learn Python. They are unlikely to
need specific NLP content in their future careers.

 2. Linguistic background. Students have never studied
linguistics and are not particularly interested in it. In
general, they are not familiar with the common syntactic
constructions of English taught in traditional English
grammar and are often unsure about parts of speech, even
though most have studied a foreign language in high
school.

 3. Academic sophistication. Students are used to getting
information from the web and are uncomfortable having to
use offline reference materials. They are not comfortable
with or interested in traditional academic prose or research
papers. They expect to have everything they need for each
assignment explicitly taught in class.

 4. Programming ability. Students are not familiar with
programming languages other than conventional
imperative languages such as C++, Java, and .NET. They
have a wide range of programming ability, where the best
have professional-level skills and the weakest should
probably not be in a graduate class.

Course goals

The course has three goals:
 1. Give students a general background in the issues
involved in handling written text, some of the most
common applications, and some of the most widely used
algorithms.
 2. Provide students with a productive experience in a
modern programming language.
 3. Teach students a number of useful concepts that they
might not otherwise come across in their course of study.
These topics include:

• Bayes’ Law (e.g., spelling correction)
• Dynamic programming (e.g., chart parsing)
• Regular expressions and finite-state machines
• Context-free grammars
• Text mining via rule induction (C4.5)

The following sections of the paper describe the most
important units of the course, showing how they use the
principles stated above to contribute to these goals.

Python

Basic Python
I teach Python from scratch for two reasons. For the
stronger students, I want them to have an opportunity to
learn a new programming style from scratch. For the
weaker students, I want to give them the opportunity to
catch up. As computer science majors, the students tend to
find that the treatment of Python in the NLTK textbook
does not answer enough of their technical questions, such
as issues on argument handling and copying of objects
vs. references to them.
 I give several lectures on Python, including the
following topics:

• Basic data structures
• Basic control structures
• Functions
• File handling
• Associative arrays
• Options for implementing trees
• Basic functional programming
• Objects

I also give several lectures on Python libraries, including
the following topics:
• GUI programming with Tkinter
• Reading and parsing web pages
• Regular expressions

The online Python tutorial (http://docs.python.org/tutorial)
is the main reference for the topics in the first group. I also
use the Python tutorial for GUI programming. I use the
Dive into Python web site (http://www.diveintopython.org)
for regular expressions and web programming. I have not
found a good reference for teaching about objects in
Python or for the Python memory model.
 Although it is easy to find references for the functional
programming constructs themselves, I have not found a
good reference for motivating students to use these
constructs or for helping them learn to visualize their
programs in terms of these new constructs.
 This section of the course basically covers the material
in chapters 1–4 of the NLTK textbook. In the end students
cope well with a language that allows them to code much
faster than C++ with less debugging. They all learn to use
Python lists and associative arrays (dictionaries). Most
learn to use some of the functional programming
capabilities available, such as list comprehensions,
although not to the degree I would like.

Allowing for student differences
To prevent the best students from getting bored, I allow
them to use any construct or library they like, whether I
have taught it in class or not. I also permit them to use
other GUIs, as some feel strongly that wxPython is
superior to Tkinter.

301

Week 1: Program 1 – Counting letters and words; using the compiler and editor
Week 2: Homework 1 – Simple functional programming practice
Week 3: Program 2 – Count by first letter; use of associative array (Python dictionaries) and data files
Week 4: Program 3 – Web programming with urllib; functions and objects
Week 5: Program 4 – Interactive Eliza-like system; regular expressions
Week 6: Program 5 – GUI front-end to an earlier assignment; Tkinter
Week 7: Program 6 – Part-of-speech tagging; serialization via the pickle module
** First exam

Week 8: Program 7 – Email spam classifier; text mining with C4.5, regular expressions to identify features
Week 9: Program 8 – Parsing with finite state machines
Week 10: Program 9 – Parsing with context-free grammars; implementations of trees
** Choose project topics
Week 11: Homework 2 – Earley’s chart parsing algorithm; dynamic programming (paper/pencil)
Week 12: Program 10 - Information retrieval with tf–idf
Week 13: Homework 3 - Spelling correction via Bayesian statistics (paper/pencil)
** Second exam

Week 14: Slack – could be used for latent semantic analysis or another theoretical topic
Week 15: Project presentations

Figure 1: Outline of syllabus

 Later on in the course, I let them use the data mining
algorithm of their choice. Many prefer support vector
machines (SVM, Vapnik 1995) because they have learned
it in our pattern recognition class. I prefer C4.5 because it
produces a decision tree rather than just a binary decision,
and because I would like to show how machine learning
can be accomplished with only elementary mathematics.

Use of Python libraries
The course includes several topics based on well-
established existing libraries. These topics include simple
web programming, regular expressions and GUI
programming.
 I teach simple web programming, e.g., how to access a
web page from a program. First, it’s useful and it impresses
students as to how easy it is to do in Python. Second, more
advanced usage, such as HTML or XML parsing, gives
them an opportunity to practice functions and objects.
Finally, accessing web content from a program is a skill
highly desired by students.
 I teach regular expressions for two reasons. In addition
to being required for continued use of the NLTK textbook,
regular expressions are an important idea that students do
not necessarily encounter in another programming class.
We experiment with Rocky Ross’ interactive web site
(Pascoe 2005) and a web site where students can build
their own tables at http://scoter3.union.edu/~hannayd/
csc350/simulators/FiniteStateMachine/fsm.htm.
 As an example of an NLP application, albeit a shallow
one, that can be implemented with regular expressions, we
experiment in class with Eliza, trying both to make it work
and make it fail. I give out a list of versions available on
the web, and students can easily find more. In class I often

use the emacs built-in version. I then give out copies of the
original Eliza paper (Weizenbaum 1966), which contains
the original script in an appendix, although the coding style
in that paper is not useful for students to emulate.
 The first major project in the course is to write their own
Eliza-type program. Students choose a realistic but limited
domain such as a database front-end. This project is
implemented in Python as a rule-based system with heavy
use of regular expressions. If the class is small enough, I
have students do a short presentation of their domain,
including a sample conversation, before they write their
code. After the projects are due, they present their results
to the class.
 Finally, I teach Tkinter because it’s easy to learn and
students benefit greatly, both for class projects and
elsewhere, by knowing a GUI framework. Some of the
better students prefer wxPython.

NLP

This section of the course covers key sections of chapters
5, 6 and 8 of the NLTK textbook.

Part-of-speech tagging
 I follow the treatment in the NLTK textbook, which starts
from a simple baseline and adds features to improve
accuracy. Although most of the students have no intrinsic
interest in parts of speech, the more adventuresome ones
appreciate this unit because they enjoy tweaking the
features and increasing the size of the training set to
improve the accuracy of the algorithm. I confine my
comments in class to the common parts of speech that they
already know. An important principle students learn during

302

this unit is that accuracy is strongly affected by the
quantity of training data used.
 I also teach the use of Pickle to create persistent objects
at this point because a tagger good enough to handle the
test data is quite large.

Text mining
Next I present a simple approach to text mining using C4.5
(Quinlan 1993). The project for this unit involves
identifying spam in a corpus provided by the makers of
SpamAssassin (http://spamassassin.apache.org/public
corpus/). Students enjoy guessing features in email headers
and text that might indicate spam. They write regular
expressions to identify these features, then use the data
acquired as input to the classifier.

Finite state machines
Finite state machines are another topic that I believe
students should not graduate without being exposed to. My
linguistically naive students are more willing than most
linguists to believe that FSMs can be used to recognize
English. It is interesting to note that their FSMs are quite
different from those derived by linguists. From a Python
point of view, FSMs are another application of the
dictionary data type, which is one of Python’s most
versatile creations.

Context-free grammars and parsing
I present several approaches to parsing, since many
students will not otherwise see context-free grammars in
their studies. These include the top-down recursive descent
parser, the bottom-up parser, and the chart parser described
in the NLTK book. NLTK has some beautiful demos that
show these parsers running step by step. These demos are
extremely helpful in showing students how the parsers
work.
 The assignment for this unit involves writing a small
CFG to handle the same sentences as the FSM assignment.
By this time students have acquired some fluency with the
common parts of speech, although their CFGs are again
quite different from those a linguist would develop. NLTK
returns the parses as parenthesized trees, which means that
this is a good time to demonstrate different ways to
implement trees in Python, as Python does not have a
primitive tree data type.
 Since the reaction of a previous class to Earley’s
algorithm was “we understand it; it’s just not interesting,” I
frame Earley’s algorithm as an example of dynamic
programming, again a topic that I feel students should not
graduate without knowing.

Information retrieval using tf-idf
As an example of a numerical technique I teach
information retrieval using tf-idf (Salton 1988). This year I
used each of the 70,000 sentences in the Brown corpus as a
“document.” Students were impressed by the behavior of

such a simple formula. The Porter stemming algorithm
(Porter 1980) is an ugly but practical way to remove
prefixes and suffixes from words. I teach it at this point so
that students can try information retrieval with and without
stemming, a well-known issue in information retrieval. I
use the treatment of it in Jurafsky and Martin (2009).

Spelling correction via Bayes’ Law
I present Kernighan, Church and Gale’s (1990) Bayesian
approach to spelling correction, as explained by Jurafsky
and Martin (2009, section 5.9).
 Kernighan et al. choose the correction that maximizes
P(t|c)P(c), where t is the typo and c is a candidate
correction. I teach briefly about Bayes’ Law in general, as I
feel it is a topic every computer scientist should have in
their toolbox. Many students have studied Bayes’ Law in a
statistics class, but have not seen it used in this fashion. I
motivate Kernighan’s formula by showing a picture of the
veery, a small brown bird. Although duplicating a letter is
a common typo, “veery” is an uncommon word and is
unlikely to be the one intended by the average student.
 Students choose a corpus and replicate Kernighan’s
calculations. They then compare their results to results
from their favorite word processor. They are generally
surprised at how similar the results are from what they
originally see as an unmotivated calculation. They are
always surprised to learn that spelling correction is
generally not done by a lookup process. They are also
surprised to learn that results are largely independent of the
corpus chosen.
 I also demonstrate approximating word frequencies by
page counts in Google, along with a discussion of the
advantages and disadvantages of doing so. In general,
students prefer to obtain word frequencies from one of
corpora included with NLTK or a similar corpus
downloaded from the web.

Course project

Once most of the programming assignments for the course
are complete, I introduce the course project. To give
students time to work on it, I save some of the paper-and-
pencil simulations for the end of the semester.
 I give students a list of several possible projects,
including an interactive conversation system or game, a
text mining project, or extending the part-of-speech tagger,
FSM or CFG they have already built. Students can also
develop their own project. I encourage international
students to redo the part-of-speech tagger, FSM or CFG
assignment in their native language; however, most
students prefer a programming project or an extension of
the text mining assignment. For weak programmers, I
provide some non-programming projects such as
evaluating a tagger or evaluating one of the large
probabilistic parsers currently available.

303

Future work

Now that the concept of teaching NLP by carefully
sequenced Python programs has been established, I would
like to extend the course to a second semester. Python
topics requested by students include a more detailed
treatment of modules, objects and the memory model, and
additional web programming.
 I would like to include several more fundamental
computer science topics in the second semester. Instead of
utilizing the top-down and bottom-up parsing algorithms
included in NLTK, I would like students to learn
backtracking by writing their own versions of these
algorithms.
 A major component of the second semester will be
algorithms for handling spoken language, including the
Viterbi algorithm and the use of HMMs. I would include
backtracking, the Viterbi algorithm and the use of HMMs
in the category of general purpose algorithms that all of our
students should learn before graduating. The actual spoken
language understanding and generation will be done with
packages. I would also like to include the use of
VoiceXML as a easy way for students to build an
interactive system.
 Finally, I would also like to find a good application for
introducing constraint satisfaction, as I feel that this is a
valuable technique that is not often taught.
 I know students would like to do some game
development, perhaps using Pygame. While I would like
them to learn the basics of event-driven programming, I am
afraid that the details of game development would
overwhelm the value of the assignment.
 There are also additional NLP topics available in the
NLTK book and elsewhere that I have not yet tried to teach
in this format, including other types of grammars and
statistical machine translation.
 NIU scheduling for the M.S. program works best when
students can start in any semester. For this reason the
second course needs to be independent of the first rather
than requiring it as a prerequisite. My proposed syllabus
for the second course contains about three weeks of
overlap at the beginning to make it available to students
with no Python background. Since one of these weeks
covers programming style and functional programming,
which students always need more practice in, there are
only two weeks of overlap. At that point it is reasonable for
students to receive credit for both courses.

Conclusions

This paper describes a syllabus for teaching NLP to
computer science majors with no background in linguistics.
The course includes carefully sequenced Python
programming assignments that teach Python programming,
the fundamentals of NLP, and some algorithms every
computer scientist should know in an organized fashion.
This course has been successfully taught to undergraduates
with a strong programming background as well as to

international graduate students with a wide range of
undergraduate preparation. They have enjoyed learning
Python and have learned something new about language
processing. I have enjoyed keeping up with natural
language processing in a way that is only possible from
detailed programming. Both of us have enjoyed having
novel assignments in a programming class.

Acknowledgments

I thank the authors of NLTK and the NLTK book (Bird,
Klein, and Loper 2009), whose extensive labor has made it
possible to teach this course. I also thank the reviewers for
their detailed and helpful comments.

References

Bird, S., Klein, E., and Loper, E. 2009. Natural Language
Processing in Python. Sebastopol, CA: O’Reilly. Also
available at http://www.nltk.org/book.
 Freedman, R. 2005. Concrete Assignments for Teaching
NLP in an M.S. Program. In Proceedings of the Second
ACL Workshop on Effective Tools and Methodologies for
Teaching NLP and CL, 37–42. Stroudsburg, PA:
Association for Computational Linguistics.
 Freedman, R. 2008. Teaching NLP to Computer Science
Majors via Applications and Experiments. In Proceedings
of the Third Workshop on Issues in Teaching
Computational Linguistics, 114–119. Stroudsburg, PA:
Association for Computational Linguistics.
 Jurafsky, D. and Martin, J. H. 2009. Speech and
Language Processing, 2/e. Upper Saddle River, NJ:
Prentice-Hall.
 Kernighan, M., Church, K. W., and Gale, W. A. 1990. A
spelling correction program based on a noisy channel
model. In Proceedings of the 13th International Conference
on Computational Linguistics (COLING), 2: 205–211.
Stroudsburg, PA: Association for Computational
Linguistics.
 Pascoe, B. 2005. Webworks FSA applet. Available at
http://www.cs.montana.edu/webworks/projects/
theoryportal/models/fsa-exercise/appletCode/
fsa_applet.html.
 Porter, M. F. 1980. An algorithm for suffix stripping.
Program 14(3): 130−137.
 Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Francisco: Morgan Kaufmann.
 Salton, G., and Buckley, C. 1988. Term-weighting
approaches in automatic text retrieval. Information
Processing and Management 24(5): 513-523.
 Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. New York: Springer.
 Weizenbaum, J. 1966. Eliza—A Computer Program for
the Study of Natural Language Computation between Man
and Machine. Communications of the ACM 9(1): 36–45.

304

