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Abstract

Multi-robot task allocation is an important problem for het-
erogeneous mobile robots. Simultaneous allocations with
which multiple tasks are being allocated concurrently tend to
lead to more efficient allocations than online or single task
allocations. However, the simultaneous allocation also in-
creases the complexity in the winner determination process,
especially when robots are required to collaborate in order to
accomplish certain tasks. This paper presents a winner deter-
mination algorithm for the simultaneous allocation of multi-
robot tasks. The complete approach layers a low-level coali-
tion formation algorithm for solving one multi-robot task
with a high-level simultaneous task allocation approach. We
implement a tree-based winner determination algorithm with
an iterative deepening A* (IDA*) search and show that the
algorithm is able to generate the optimal task-coalition map-
ping in the initial round and the IDA* performs efficiently
based on time and space complexities.

Introduction

Multi-robot teams are widely used in today’s robotic appli-
cations because they are expected to enhance the efficiency
and reliability of a solution or they need to explicitly cooper-
ate to accomplish a task. For heterogeneous robot teams, the
multi-robot task allocation (MRTA) problem is of major re-
search interest. It determines an efficient mapping between
robots and tasks. We are particularly interested in domains
where there are multiple tasks being offered for simultane-
ous allocation and each task may require multiple robots to
work closely with one another. According to the taxonomy
described in (Gerkey and Mataric 2004), our work can be
classified as a single-task (ST) robot, multi-robot (MR) task
and instantaneous assignment (IA) problem. In our defini-
tion, a multi-robot task is not trivially serializable, and can-
not be decomposed further into subtasks that can be com-
pleted by individual robots operating independently. This
type of task requires multiple robots to act in concert as in a
coalition to achieve the task objective.

One motivating multi-robot task to consider is the site
clearing application, a simplified version of the site prepa-
ration task (Parker et al. 2000), which has been identified
by NASA as an important prerequisite for human missions
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to Mars. A heterogeneous robot team is assigned the task to
clear obstacles by pushing them to the closest collection site.
The area and locations of the robots, obstacles and collec-
tion sites are known. Obstacles have different weights and
sizes, thus multiple robots need to work together to remove a
single obstacle. Note that robots also have different capabil-
ities. They may need to exchange sensing or computational
information to work together and remove an obstacle. For
instance, a robot with a range sensor can provide the relative
angle of the obstacle to another robot with no range sensor,
which then enables it to locate and push the obstacle. We
further assume that a partial-order planner exists to deter-
mine the ordering constraints of removing the obstacles, in
case certain obstacles need to be removed before other ob-
stacles can be cleared. Since only some tasks have ordering
constraints, the system can allocate a subset of the tasks to
the robots for concurrent execution, with each task removing
one obstacle. Thus, when making a task allocation decision,
robots need to consider more than one task at a time. Addi-
tionally, when multiple coalitions are available, the system
must determine which coalitions are the best fit to the cur-
rent set of tasks.

In our prior work, Tang and Parker developed the
ASyMTRe-D coalition formation algorithm for autonomous
task solutions (Tang and Parker 2007). From our perspec-
tive, an individual task cannot technically be categorized
in advance as a single-robot or multi-robot task. Instead,
whether or not the task requires single or multiple robots de-
pends on the capabilities of the heterogeneous team. The
ASyMTRe-D approach is able to find combinations of robot
capabilities that can accomplish a single task in either case,
depending on the team composition. To handle multiple
tasks, our approach layers ASyMTRe-D with a traditional
auction-based task allocation approach to assign one task at
a time to the robot coalition with the highest bid. In this
work, we continue to use ASyMTRe-D to form coalitions at
the low level, but extend the single task allocation to simul-
taneous allocation of multiple tasks.

When multiple tasks are considered, combinatorial auc-
tions ((Sandholm 2002), (Berhault et al. 2003)) are often
used for robots to express their desirability on accomplish-
ing combination of tasks. However, these tasks are often
single-robot tasks and each robot can win more than one task
at a time. A typical example is the multi-robot routing prob-
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Figure 1: The relationships between tasks, coalitions and
robots.

lem, where robots need to visit a set of locations in the en-
vironment. It is naturally efficient to group nearer locations
together for allocation since a robot can visit multiple loca-
tions on a single trip. Our problem domain is fundamentally
different from the above problem because a robot coalition
can only remove one obstacle at a time since the coalition
needs to work together to push an obstacle to a collection
site. In other words, our problem is equivalent to a combi-
natorial auction problem where only task bundles with size
one are considered (Dias et al. 2006). The winner determina-
tion process however, is more challenging since each winner
is a coalition (subset) of robots instead of a single robot. As
a result, our approach needs to guarantee that the winning
coalitions do not share the same team members. In this pa-
per, we introduce our winner determination algorithm using
an iterative deepening A* (IDA*) search that is adapted from
the multi-agent system. The contributions of this work are
twofold. First, it successfully adapts the winner determina-
tion algorithm used in combinatorial auction to the MRTA
problem. Second, it can be layered with the ASyMTRe-D
approach and produces a complete approach to autonomous
task solution generation for multiple tasks.

The remainder of the paper is organized as follows. We
first give an overview of our complete approach to au-
tonomous solution generation, with a focus on the im-
plementation of the winner determination algorithm using
IDA*. We then evaluate the performance of the winner de-
termination algorithm and compare it with a baseline al-
gorithm. We then give a background of the related work
and provide concluding remarks in the conclusion and fu-
ture work.

The Approach: Layering Coalition Formation

with Task Allocation

Overview

The main idea of our approach to task allocation is illus-
trated in the algorithm listed in Table 1 and Figure 1. We
assume that there exists a partial order planner that finds a
set of subtasks T i from the team-level task T according to
the partial order plan. Here, T i represents the set of subtasks

Table 1: Simultaneous Multi-Robot Task Allocation

Input: (T, R)

1. Find the set of tasks T i , such that both the ordering con-
straints and the preconditions of tasks are satisfied.

2. Configure solutions for each task tj in T i by forming a set
of coalitions Ci, based on tj’s objective and the current team
capabilities.

3. Allocate tasks in T i to coalitions in Ci, such that:

• The task contribution value is maximized for T i.

• A coalition can win at most one task at a time. Assum-
ing C′ ⊆ Ci is the set of winning coalitions selected to
perform tasks in T i, then the following condition must be
satisfied: ∀C′

i
,C′

j
∈C′,i�=j , C

′
i ∩ C′

j = Ø.

4. Monitor the execution of tasks. If the entire task is not com-
plete, start the allocation process (go to step 1) when robots
are within Δt time to complete their current tasks. Other-
wise, exit.

{t1, t2, ..., tk} that satisfies the ordering constraints and any
precondition requirement, and thus can be allocated concur-
rently. At the low level, coalitions {C1, ..., Cm} from the
team of robots {R1, ..., Rn} are formed by ASyMTRe-D to
address the given set of subtasks T i. Each coalition Ci may
include a varying number of robots. These coalitions are not
mutually exclusive and may share the same team members,
or could even be identical coalitions. The coalitions then
compete for the assignment of subtasks using an auction-
based task allocation approach with our proposed algorithms
for winner determination.

Low-Level Coalition Formation

To better understand the integrated system, we now de-
scribe our previous work on coalition formation, called
ASyMTRe-D (Parker and Tang 2006). The ASyMTRe-D
approach has been developed for addressing the formation
of heterogeneous robot coalitions that solve a single single-
robot or multi-robot task. We share the same motivation be-
hind coalition formation as mentioned in (Shehory 1998);
that is, robots in a coalition should work together to share
resources and cooperate on task execution due to their deci-
sion that they would benefit more from working together as
a coalition than they would from working individually.

The fundamental idea of ASyMTRe-D is to change the
abstraction that is used to represent robot competences
from the typical “task” abstraction to a biologically-inspired
“schema” abstraction and provide a mechanism for the auto-
matic reconfiguration of these schemas to address the multi-
robot task at hand. To achieve this, we view robot capa-
bilities as a set of environmental sensors that are available
for the robot to use, as well as a set of perceptual schemas,
motor schemas, and communication schemas that are pre-
programmed into the robot at design time. The ASyMTRe-
D approach autonomously connects schemas at run time in-
stead of using pre-defined connections. According to the
information invariants theory (Donald 1995), the informa-
tion needed to activate a certain schema or to accomplish a
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task remains the same regardless of the way that the robot
may obtain or generate it. We can therefore label inputs and
outputs of all schemas with a set of information types, such
as self global positioning data. Two schemas can be con-
nected if their input and output information labels match.
Thus, schemas can be autonomously connected within or
across robots based upon the flow of information required
to accomplish a task. With the run time connection capa-
bilities, task solutions can be configured in many ways to
solve the same task or can be reconfigured to solve a new
task. We have implemented the ASyMTRe-D approach us-
ing a distributed negotiation protocol. We have further ex-
tended ASyMTRe-D such that it generates multiple eligible
coalitions for one task. However, the size of a coalition is
limited to a predefined maximum coalition size assuming
robots work in a non-super-additive environment (Shehory
1998).

To evaluate the performance of robot coalitions, we cal-
culate a task contribution value for each coalition that rep-
resents the contribution that the coalition can bring to the
overall task completion. This value is determined by mul-
tiple factors such as the robot-inherent cost and the task-
specific cost. The robot-inherent cost is calculated by the
sum of the sensing and/or computational cost of activating
the required schemas in a coalition. To guarantee the solu-
tion quality, the cost is also combined with the success prob-
ability of the coalition through a weighted linear function. In
ASyMTRe-D, each schema or sensor has a predefined cost
and success probability associated with it. For example, us-
ing stereo vision to calculate the depth information might be
less accurate than using laser range data, while the latter ap-
proach consumes more power and thus costs more. The task-
specific cost is determined by the task completion time and
other task-related factors when necessary. In our site clear-
ing task, the completion time is determined by the locations
of the box and the robot coalition. We convert the above two
costs into a numeric value through another weighted linear
function that is domain-specific and determined by the user.
In an idea situation, a higher contribution value means that a
task with a shorter completion time is assigned to a coalition
with a lower cost and a higher success rate.

The high-level task allocation approach is implemented
with an auction process in order to handle multiple tasks,
which includes typical steps such as task announcement,
coalition formation through ASyMTRe-D, bid submission,
winner determination and award acceptance. Since our main
contribution in this paper is the winner determination pro-
cess (step 3 in the allocation algorithm), we focus on it
in the following discussion. More information about the
ASyMTRe-D approach for coalition formation and layer-
ing ASyMTRe-D with a high level auction approach can be
found at (Tang and Parker 2007).

Winner Determination for Simultaneous Task
Assignments

Since robots have different capabilities, the coalitions they
form also produce different contribution values given the
same task. If we allow each coalition to win multiple tasks,
a potential problem arises because it is possible that a more

Table 2: An example of the list of bids submitted.
Task Coalitions submitted

t1 {R1, R2, 3}, {R2, R3, 4} and {R3, 2}
t2 {R1, R2, 4}, {R2, 5} and {R3, 3}
t3 {R1, R3, 4}, {R2, R3, 4} and {R3, 8}

capable coalition (thus with a higher contribution value) will
receive multiple tasks while some less capable coalitions
will remain idle. In this way, the system does not fully utilize
the capabilities of the whole robot team. Since robots cannot
multi-task in our site clearing problem domain, our approach
needs to ensure that each coalition can win at most one task
at a time and no two coalitions share the same team mem-
ber(s). With this approach, the set of tasks can be distributed
among different coalitions, instead of being assigned to the
single best coalition. Eventually, the set of tasks can be ac-
complished in a more efficient manner. To sum up, the goal
of the winner determination step is to guarantee that: (1) the
overall task contribution value for T i is maximized and (2)
each coalition can win at most one subtask with no winning
coalitions sharing the same team member(s).

The winner determination process is similar to a combina-
torial optimization problem called the Set Partitioning Prob-
lem (SPP). Here, we need to partition the set of robots such
that each partition is a coalition of robots that can accom-
plish one subtask and the overall contribution value of the
partitions is maximized. The SPP problem has been exam-
ined thoroughly in the multi-agent society for agent coalition
formation (Shehory 1998) and combinatorial auction (Sand-
holm 2002). In combinatorial auctions, multiple tasks are
put up for auction and each bidder can bid on subsets of
tasks and win more than one subset. In (Sandholm 2002), an
optimal winner determination algorithm is developed for de-
termining the winners for a set of single-robot tasks, where
each bidder can win multiple tasks. Inspired by the above
algorithm, we also use tree search to achieve our goal of
assigning coalitions to tasks to maximize the overall contri-
bution value. The input to our algorithm is a list of bids,
with each bid containing the information such as the robot
coalition members, its contribution value, and the subtask it
can accomplish. Unlike (Sandholm 2002), we assign multi-
robot tasks to coalitions of robots. Additionally, we do not
exclude lower bids that are submitted for the same task since
we do not allow a coalition to win more than one task.

The bids are preprocessed such that each task ti maintains
a set of coalitions Cti that bid for ti, as shown in Table 2.
The last element in the coalition set represents its contri-
bution value. A dummy bid with an empty coalition and a
zero bid value is inserted to each Cti , corresponding to the
case where no coalition can accomplish ti. These bids are
then used to build our search tree such that each path from
the root to a leaf node represents exactly one possible parti-
tion of the robots. The contribution value for each partition
is the sum of the bid values of that path. Starting with a
dummy root node, the following two rules ensure that the
above property is maintained. First, each path is composed
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Figure 2: The bid tree corresponding to the bids submitted
in Table 2. The dotted lines represent the branches that can
be pruned with the IDA* search. The red lines represent the
optimal allocation with a total contribution of 13.

of nodes with disjoint coalitions, that is, bids that do not
share team members with each other. When inserting a bid,
we need to make sure that the coalition members in this bid
do not appear anywhere on the current path from the root
to its parent node. If no bid satisfies this condition, we can
still insert a dummy bid. Second, each node (coalition) on a
given path attacks a different task on that path. To achieve
this, we make sure nodes with the same depth are composed
of bids submitted for the same task ti. The order of the tasks
which we use to build the search tree does not affect the final
result. Figure 2 shows a complete search tree corresponds to
the bids submitted in Table 2.

Similar to Proposition 3.3 in (Sandholm 2002), the worst
case of the tree size (number of nodes) is analyzed below.
The maximum depth of the tree is the number of tasks (k)
being allocated. Let the total number of bids (including the
dummy bids) be m and ni = |Cti |. The upper bound on the
tree size is given by n1 × n2 × ... × nk with n1 + n2 +
... + nk = m. The maximum possible number of nodes is
bounded by n1 = n2 = ... = nk = m/k. Therefore, the
number of nodes in the tree is no greater than (m/k)k. The
bound shows that worst case time/space complexity of the
algorithm is polynomial in the number of bids if the number
of tasks being considered in the current round is fixed.

IDA*

At each iteration of the IDA*, we perform a depth-first
search, cutting off a branch when its estimated maximum
possible contribution value is less than a given threshold,
which starts at the estimate of the contribution value of the
root, and decreases for each iteration of the algorithm. At
each iteration, the threshold used for the next iteration is the
maximum contribution of all values that are less than the
current threshold. To guarantee the optimality, we apply an
admissible heuristic. Assume n is a node, the heuristic h(n)
is defined as the sum of the maximum contribution for each
unassigned robot on the current path of n that performs the
rest of the unallocated tasks on the same path. Formally
speaking, we have:

h(n) =
∑

Ri /∈n.bid

Contribute(Ri) (1)

Contribute(Ri) = max
Ri∈tj.bidk.robots

tj .bidk.val

tj .bidk.size
(2)

Where n.bid is the set of robots that appear on the cur-
rent path of n and Contribute(Ri) represents the maximum
potential contribution of a robot Ri among all unallocated
tasks. To calculate Contribute(Ri), we first find the set of
unallocated tasks ({∀j|tj is unallocated on the current path
of n.}) that robot Ri participates as a coalition member, and
then compute a set of potential contribution values by di-
viding the bid value (tj.bidk.val) by the number of robots
in that coalition (tj.bidk.size). The highest value in the set
represents the maximum potential contribution for a robot
Ri. This heuristic will never underestimate the legitimate
contribution a robot could make on the current partition and
thus it is an admissible heuristic for this search problem. The
result of the search tree based on IDA* is shown in Figure 2
corresponding to the bids submitted in Table 2. Here, the
dotted lines represent the branches been cut. In this exam-
ple, the initial contribution in the first iteration is 15 and it is
reduced to 13 for the next iteration and the optimal alloca-
tion is found afterwards.

Experiments

We have implemented the IDA* for winner determination
in Python. We have also implemented a baseline breadth-
first search (BFS) algorithm for comparison. To validate the
correctness and evaluate the performance of the IDA*, we
generate bids with different distribution as described below.
From the theoretical analysis, we know that the size of the
bid tree is largely influenced by two factors: (1) the number
of bids submitted and (2) the number of tasks been allocated.
Thus, in the experiment, we used a fixed small-size robot
team with 10 robots, with a varying number of tasks from
10, 15, to 20 and a varying number of bids from 10 to 160.
The following two bid distributions are considered:

• Random: For each bid, we pick the number of robots
(coalition size) randomly from 1, 2, ..., 10. The contri-
bution value is also random.

• Uniform: This distribution accepts bids of a fixed coali-
tion size, in our case, 3 robots. We select this number be-
cause this size was frequently used in our previous coali-
tion formation simulation and physical experiments. We
want to keep the coalition size relatively small, since a
large coalition would generate more interferences among
robots. The contribution value is random.

Each data point in our experiment is averaged over 10
runs. Each run only considers one round of allocation such
that leftover tasks from the first round are reinserted into the
task queue for the future allocation. The experiments we
have done are threefold. We first measure the correctness of
both algorithms. We then measure and compare the perfor-
mances of both the BFS and IDA* algorithms with regard to
their time and space complexities. For space complexity, we
record the number of nodes generated in the search process.
The objective is to see how IDA* behave with an increas-
ing number of bids and tasks, without affecting the solution
quality.
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Results and Discussion

Table 3: Space Complexity (Number of Nodes in the Bid
Tree) Comparison of Randomly Distributed Bids

Tasks Bids 10 20 30 40 50
IDA∗ 24 75 105 136 345

10 tasks
BFS 106 979 4681 9205 29945

IDA∗ 26 93 146 189 420
15 tasks

BFS 119 1154 6136 24402 57530

IDA∗ 25 78 198 254 484
20 tasks

BFS 163 2042 9788 36604 130201

Table 4: Time Complexity (in seconds) Comparison of Ran-
domly Distributed Bids

Tasks Bids 10 20 30 40 50

IDA∗ 0.02 0.12 0.31 0.43 1.53
10 tasks

BFS 0.01 0.11 0.59 1.32 4.60

IDA∗ 0.02 0.14 0.33 0.56 1.69
15 tasks

BFS 0.01 0.13 0.70 3.42 10.17

IDA∗ 0.03 0.15 0.44 0.73 1.72
20 tasks

BFS 0.02 0.23 0.96 4.91 21.70

Table 5: Space Complexity (Number of Nodes in the Bid
Tree) Comparison of Uniformly Distributed Bids

Tasks Bids 40 70 100 130 160

IDA∗ 61 114 171 228 271
10 tasks

BFS 2364 2364 5240 9643 17089

IDA∗ 95 159 258 317 443
15 tasks

BFS 974 3419 8051 15113 20586

IDA∗ 110 227 348 455 585
20 tasks

BFS 1284 4531 10365 20586 34796

In our experiments, the BFS will be given enough time
to perform a complete search and the best solution will be
returned. Since our bid tree has a finite branch factor and
depth, the solution returned by BFS is the optimal solution.
We then compare the solution from IDA* with the solu-
tion found through BFS and found that the total contribution
value are always the same for both algorithms. However,
the task-coalition mappings are different in many cases be-
cause when multiple optimal allocations are available, the
BFS only keeps track of the first best solution.

Tables 3 and 5 compare the BFS and the IDA* algorithms
with regard to their space complexities. We can see that the
size of the bid tree increases when we increase the number of
bids and the number of tasks, which matches our theoretical
analysis. IDA* outperforms BFS in terms of the number of
nodes expended. We also notice that the bid tree generated

Table 6: Time Complexity (in seconds) Comparison of Uni-
formly Distributed Bids

Tasks Bids 40 70 100 130 160

IDA∗ 0.09 0.34 0.78 1.47 2.40
10 tasks

BFS 0.05 0.25 0.75 1.74 3.54

IDA∗ 0.13 0.54 1.02 1.78 3.13
15 tasks

BFS 0.07 0.41 0.96 2.24 4.35

IDA∗ 0.14 0.55 1.22 2.27 3.71
20 tasks

BFS 0.08 0.38 1.10 2.58 5.13

by the randomly distributed bids is much larger than the tree
generated by the uniform distribution. This is because the
bids in a uniform distribution have a higher chance of shar-
ing the same team member(s) and thus result in a sparser
bid tree. To see the tendency of the growth clearly, we have
included more bids (from 40 to 160 bids) in our uniform
distribution. Tables 4 and 6 compare the time complexities
of both algorithms. For the random distribution, the time
complexities for both algorithms well represent their space
complexities: (1) the more tasks and bids that are consid-
ered, the longer it takes to find the optimal solution; and (2)
IDA* takes much less time than BFS when the difference in
the bid tree is large. We should note that IDA* has the over-
head of heuristic evaluation for every node. We conclude
that both the BFS and IDA* are able to generate the opti-
mal task-coalition mappings while the IDA* performs more
efficiently in its space and time requirements.

Related Work

In past work, many task allocation approaches deal with
the single-robot (SR) and instantaneous assignment (IA)
((Parker 1998) and (Gerkey and Mataric 2002)) problem.
Typically, a high- level task is decomposed into independent
subtasks or roles either by a general autonomous planner or
by a human designer, which can be achieved concurrently by
individual robots. The IA mechanism enables subtasks to be
allocated iteratively until all subtasks are assigned. A greedy
algorithm or online assignment is usually applied such that
only one task is under consideration at a time to find the
best robot-task pair. Our task allocation strategy is different
in that we are allocating MR-tasks. Assume there are more
tasks than eligible coalitions, our algorithm optimally solves
the initial assignment by maximizing the total contribution
value and then uses the Greedy algorithm to assign the re-
maining tasks as the robots become available.

Some recent approaches are beginning to allocate multi-
robot tasks. The work of (Zlot and Stentz 2006) addresses
complex multi-robot tasks by trading task trees, in which
subtasks are achieved in order according to their precedence
constraints. However, their tasks can be decomposed into
multiple loosely-coupled single-robot tasks, which is differ-
ent from our problem domain. The work of (Kalra, Fer-
guson, and Stentz 2005) addresses tight coordination in a
security sweep domain. Their coordination is achieved by
trading joint plans that generate more revenue than individ-
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ual plans. The work of (Jones et al. 2006) also addresses
tight coordination in a treasure-hunt problem through allo-
cating roles that are predefined through play scripts. The
articles mentioned above are all built upon an interactive
task allocation system using a market-based economy (Dias
2004). The fundamental difference of our work lies in
the low-level ASyMTRe-D for coalition formation that au-
tonomously generates the team solution instead of using a
predefined solution. The winner determination algorithm
adapted from the multi-agent system completes our coali-
tion formation approach by allowing multiple tasks being as-
signed simultaneously. The work of (Vig and Adams 2006)
also adopts the coalition formation technique from multi-
agent systems. In their work, tasks are assigned one at a
time in an iterative manner until all tasks are cleared. In
our allocation algorithms, we make multiple task-coalition
assignments simultaneously with a centralized winner de-
termination algorithm.

A recent work (Jones, Dias, and Stentz 2009) addresses
problems in the multi-robot and time-extended allocation
domain. In their application, fire-fighting trucks need to visit
different locations to extinguish fires and they may need the
help of cleaning robots to clear the routes with debris. A
tiered-auction approach is implemented with the first tier
auctioning a cluster of locations based on distance and each
cluster is assigned to the truck with the highest bid, and the
second tier handling collaboration between the truck and the
cleaning robot once the truck wins a task cluster. One po-
tential problem of the first tier auction is that it is possible
that a truck will be assigned too many tasks because of its
higher bids. If the tasks are more evenly distributed among
the trucks, then the overall mission can be completed in a
more timely manner.

Conclusion and Future Work

Simultaneous multi-robot task allocations, where multiple
tasks are being considered at the same time, can lead to
more efficient allocations than traditional iterative alloca-
tions, where tasks are considered sequentially. We have de-
scribed our approach for layering the low-level ASyMTRe-
D for generating multi-robot task solutions through coalition
formation, with an auction-based simultaneous task alloca-
tion approach for assigning tasks to coalitions. The winner
determination algorithm considers all possible mapping of
tasks to coalitions that are proposed by the robots and gener-
ates an optimal mapping between tasks and coalitions. Our
ongoing work includes the demonstration of the integrated
work on the site clearing task with a comparison of simulta-
neous allocation with single task allocation.
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