

A Novel Constraint Model for Parallel Planning

Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
bartak@ktiml.mff.cuni.cz

Abstract
A parallel plan is a sequence of sets of actions such that any
ordering of actions in the sets gives a traditional sequential
plan. Parallel planning was popularized by the Graphplan
algorithm and it is one of the key components of successful
SAT-based planers. SAT-based planners have recently
begun to exploit multi-valued state variables – an area
which seems traditionally more suited for constraint-based
planners – and they improved their performance further. In
this paper we propose a novel view of constraint-based
planning that uses parallel plans and multi-valued state
variables. Rather than starting with the planning graph
structure like other parallel planners, this novel approach is
based on the idea of timelines and their synchronization.

Introduction
Classical AI planning deals with finding a sequence of
actions that transfer the world from some initial state to a
desired state. We assume a fully observable (we know
precisely the state of the world), deterministic (the state
after performing the action is known), and static (only the
entity for which we plan changes the world) world with a
finite (though possibly large) number of states. We also
assume actions to be instantaneous so we only deal with
action sequencing. Actions are usually described by a set
of preconditions – features that must hold in a state to
make the action applicable to that state – and a set of
effects – changes that the action makes to the state. Action
sequencing is naturally restricted by causal relations
between the actions – the effect of certain action gives a
precondition of another action.
 Traditional sequential planning algorithms explore
directly the sequences of actions. One of the disadvantages
of this approach is liability to exploring symmetrical plans
where some actions can be swapped without changing the
overall effect. Hence if some sequence of actions does not
lead to a goal then the algorithm may explore a similar
sequence of actions where certain actions are swapped

Copyright © 2011, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

though this sequence leads to exactly same non-goal state.
This is called plan-permutation symmetry (Long and Fox
2003). It is possible to remove some of these symmetries
by symmetry breaking constraints as suggested in
(Grandcolas and Pain-Barre 2007) or (Barták and Toropila
2009). Another way to resolve this problem is partial-
order planning where the plans are kept as partially
ordered sets of actions (the partial order respects the causal
relations). CPT planner (Vidal and Geffner 2004) is
probably the most successful (in terms of International
Planning Competition) constraint-based planner that does
partial-order planning. A half way between partial-order
and sequential planning is parallel planning, where the
plan is represented as a sequence of sets of actions such
that any ordering of actions in the sets gives a traditional
sequential plan. This concept was popularised by the
Graphplan algorithm (Blum and Furst 1997) that
introduced a so called planning graph to efficiently
represent causal relations between the actions. Planning
graph became a popular representation of parallel plans for
approaches that translate the planning problem to other
formalisms such as Boolean satisfiability or constraint
satisfaction (Do and Kambhampati 2000; Lopez and
Bacchus 2003).
 In this paper we propose a novel constraint model for
parallel planning. This model is motivated by recent
success of SAT-based planner SASE (Huang, Chen, and
Zhang 2010) that exploits multi-valued state variables
(Helmert 2006). Rather than following the planning graph
translation to a constraint satisfaction problem, the novel
model is much closer to the modern timeline-based
approach to planning (Pralet and Verfaillie 2009). The
model is proposed for the multi-valued state variable
representation of planning problems and it is based on idea
of describing the evolution of each state variable and
synchronizing the changes between the different state
variables. In the paper, we will first formally introduce the
planning problems to be solved and give necessary
background and related works. Then we will describe the
core concept of the planner and after that we will formally
define the constraint model and describe the used search
strategy. We will conclude with the experimental
evaluation of the new planner.

9

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

The Problem
AI planning task is to find a sequence of actions that
transfer the initial world state to a state satisfying a given
goal condition. For describing world states and actions we
use a so called SAS+ formalism (Bäckström and Nebel
1995) that is based on multi-valued state variables
(Helmert 2006). For each feature of the world, there is a
state variable describing this feature, for example
rloc(r1,S) describes the location of robot r1 at state S. This
state variable may acquire one of finitely many values.
Each world state is described by a complete instantiation of
the state variables. The advantage of this representation
over the classical propositional representation is that it
naturally expresses some facts, such as that the robot
cannot be simultaneously at two locations which is not
directly expressed when the logical propositions are used.
 Action is applicable to world states satisfying the action
precondition. Briefly speaking the action precondition
expresses which values of the state variables are required
by the action. Formally, action precondition is a set (a
conjunction) of expressions in the form either state-
variable = value or state-variable � set-of-values (not in
SAS+) such that each state variable appears at most once in
this set. Actions change the values of the state variables,
which is captured by actions’ effects. Formally, an action
effect is a set (a conjunction) of expressions in the form
state-variable � value such that each state variable
appears at most once in the set. After performing the
action, the state variables that do not appear in the action
effect will not change their value (the frame axiom) while
the state variables appearing in the effect will take the
value specified in the effect. Figure 1 gives an example of
such representation.
 The planning task can be formulated as follows. Given a
complete specification of the initial state (the values of all
state variables) and a description of the goal condition as a
set of expressions in the form either state-variable = value
or state-variable � set-of-values find a sequence of actions
that transfer the world from its initial state to the state
satisfying the goal condition. This is called sequential
planning. In this paper we deal with parallel planning
where we are looking for a sequence of sets of independent
actions such that the sequential plan is obtained by
arbitrary ordering of actions in the sets. Two actions are
independent if no state variable appearing in the effect of
one action appears in the precondition or effect of the other
action. This condition ensures that if both actions are
applicable to a given state then they can be applied in any
order and the states after application of both actions will be
identical. Hence for a given state s and a set AS of pair
wise independent actions applicable to this state we can
define a state after application of these actions as the state s
modified by the effects of actions in SA. Note that this is
possible because the actions in SA are setting different state
variables thanks to their independence. Obviously, a
sequential plan is a special case of the parallel plan; the
advantage of using parallel plans is removing some plan-
permutation symmetries.

Domain
DWR domain with two locations (loc1,loc2), a robot (r) capable
of loading and unloading containers, and one container (c)

State Variables

rloc � {loc1,loc2} ;; robot’s location
cpos � {loc1,loc2,r} ;; container’s position

Actions

1 : move(r, loc1, loc2)
;; robot r at location loc1 moves to location loc2
Precond: rloc = loc1
Effects: rloc � loc2

2 : move(r, loc2, loc1)
;; robot r at location loc2 moves to location loc1
Precond: rloc = loc2
Effects: rloc � loc1

3 : load(r, c, loc1)
;; robot r loads container c at location loc1
Precond: rloc = loc1, cpos = loc1
Effects: cpos � r

4 : load(r, c, loc2)
;; robot r loads container c at location loc2
Precond: rloc = loc2, cpos = loc2
Effects: cpos � r

5 : unload(r, c, loc1)
;; robot r unloads container c at location loc1
Precond: rloc = loc1, cpos = r
Effects: cpos � loc1

6 : unload(r, c, loc2)
;; robot r unloads container c at location loc2
Precond: rloc = loc2, cpos = r
Effects: cpos � loc2

Figure 1. Example of planning domain represented using multi-
valued state variables.

Background and Related Works
Constraint satisfaction problem (CSP) is defined by a set
of variables, each variable has a finite set of possible
values, and constraints specify allowed combinations of
values assigned to the variables. The task is to find an
instantiation of the variables satisfying all the constraints.
CSPs are solved by the combination of search and
inference realized via maintaining constraint consistency.
Designing the proper constraint model is the key step in
problem solving as it defines the level of inference – how
much the search space is pruned.
 Constraint satisfaction techniques were first applied in
AI planning via manually designed constraint models for
concrete planning domains (van Beek and Chen 1999).
General models applicable to any planning problem were
based on translation of the planning graph to a CSP (Do
and Kambhampati 2000; Lopez and Bacchus 2003). Barták
and Toropila (2008) reformulated these models to use
multi-valued state variables and ad-hoc tabular constraints.
These ideas are used in planning systems SeP (Barták and
Toropila 2009) and Constance (Gregory, Long, and Fox
2010).

10

The Concept
There are many ways to describe planning problems in a
form appropriate for problem solving. A natural
representation for multi-valued state variables is a state
transition diagram (also known as a domain transition
graph) which is basically a finite state automaton (FSA).
Each planning state variable is represented using a single
automaton whose states correspond to the values of the
variable and the arcs describe how the actions are changing
the value of the state variable. In particular, if a given state
variable v is both in the precondition (v = a) and effect
(v � b) of the action then the arc(s) connects the value(s)
from the precondition with the value in the effect (a � b).
If the state variable is only in the effect then there are arcs
from all values to the value in the effect. If the state
variable is only in the precondition then there is a loop in
the corresponding value. Finally, if the state variable is not
used by a given action then there are loops in all values.
The initial state in FSA describes the initial value in the
planning problem; the final states are defined by the goal
condition (all states are final, if the state variable does not
appear in the goal condition). Figure 2 gives an example of
the FSA representation for the planning domain from
Figure 1, where we assume the robot to be initially at
location loc1 and the container at location loc2 and the
goal is to have the container at location loc1.

Figure 2. Representation of the planning domain (Figure 1) and
problem using finite state automata.

Each finite state automaton defines a regular language
describing the sequences of actions transferring the
automaton from the initial state to the goal state. Hence,
any plan belongs to the intersection of the regular
languages defined by the automata for the state variables.
In other words, to solve the planning problem we need to
find a path in each FSA and the paths must be
synchronized between the automata. We can describe the
evolution of the state variable as a timeline as Figure 3
shows. Notice that the sequences of actions are identical
for all the state variables.

Figure 3. Timelines describing the synchronized evolution of the
state variables (the action numbers are taken from Figure 1).

The above representation using FSA is appropriate for
sequential planning as each action changes the states in all
automata. In parallel planning we allow different actions to
appear at a single planning step provided that the actions
are independent. In other words, it is possible to change the
states in different automata using different actions at the
same planning step if these changes are not in conflict. To
support parallel planning we modify the FSA
representation in the following way. Each FSA contains
two sorts of arcs: the arcs defining the effects of the actions
for actions changing the state variable and the arcs defining
the no-op actions indicating that the state variable is not
changed. The difference from the no-op actions used in the
planning-graph is that we use a dedicated no-op action for
each value of the state variable. Figure 3 gives an example
of this modified representation where the no-op actions are
indicated by negative numbers.

Figure 4. Representation of the planning domain (Figure 1) and
problem using finite state automata with no-op actions.

The reason for having more no-op actions per FSA is that
we still need to synchronize the automata, in particular to
model the preconditions of actions. If some action requires
a particular value of the state variable but the action is not
changing that state variable then we require the
corresponding FSA to move along the arc annotated by the
no-op action representing the value in the action
precondition. Notice that this model allows different
actions in a single step to have the same precondition
exactly in accordance with the definition of independent
actions. Figure 5 shows the evolution of the state variables
in this modified model. We also show there how the real
actions are forcing the presence of some no-op actions.

Figure 5. Timelines describing the evolution of the state variables
with no-op actions (the arrows indicate synchronization).

The FSA model with no-op actions supports parallel
independent actions, but the synchronization of automata is
more complex and must be done explicitly as different
actions may change the values of different state variables
at the same time. We shall now describe how to encode
this model as a constraint satisfaction problem.

loc1 loc2

1 �2�
rloc

r

2�
�1

loc1 loc2

-3

-1 -2
3

6 5

4

cpos

loc1 loc2

1

2 3,5

4,6
rloc

r

loc1 loc2

1,2

1,2 1,2 3
6�

5

4

cpos

loc1
loc2

loc1
loc2

r

rloc

cpos

1

-2

-2

4

2

-3

-1

5

loc1
loc2

loc1
loc2

r

rloc

cpos

1

1

4

4

2

2

5

5

11

The Constraint Model
We are using the traditional approach of converting the
planning problem where the number of actions in the plan
is unknown in advance to a static constraint satisfaction
problem as suggested in (Kautz and Selman 1992). In
particular, we formulate the problem of finding a parallel
plan of length n as a CSP and we solve the original
planning problem by starting with n = 0 and incrementing
n by 1 if no plan is found. Let k be the number of state
variables then we introduce k(n+1) state variables Si

j in the
constraint model describing all the states “visited” by the
parallel plan (i = 1,…,k, j = 0,…,n). The domain of
variable Si

j consists of values of the i-th state variable. The
state variables Si

0 are instantiated using the values from the
initial state while the state variables Si

n are restricted based
on the goal condition. We also introduce kn action
variables Ai

j in the constraint model describing the actions
changing the state variables. The domain of variable Ai

j
consists of actions that have the i-th state variable among
the effects and the no-op actions for that state variable. For
example, the domain of Acpos

j is {-3,-2,-1,3,4,5,6} for the
problem from Figure 4.
 There are two core types of constraints in our model.
First, we need to model the state transitions based on the
FSA representation. We use a ternary sequencing
constraint connecting variables Si

j-1, Ai
j, Si

j. Basically, this
constraint describes the arcs in the FSA representation. The
triple (p,a,q) satisfies the constraint for the i-the state
variable if one of the following conditions hold:
� a is a real action such that q is the value of its effect in

the i-th state variable and value p is compatible with
the precondition of a (a is using value q as its
precondition or a has no precondition in the i-th state
variable),

� a is a no-op action for value p of the i-th state variable
and p = q.

In the terms of FSA, we can say that a annotates the arc
connecting states p and q in the automaton. Hence, the
sequencing constraint describes the evolution of the
corresponding state variable as shown in Figure 5.
 The second type of constraint describes the
synchronisation between the evolutions of the state
variables. In particular, if the action is changing several
state variables then the action must be assigned to the
action variables for all these states in a given layer (we call
the variables Ai

j with identical j a layer). Moreover, if the
action has a precondition in the state variable that is not
among its effects (for example actions 3-6 in Figure 1 have
precondition in the state variable rloc while changing only
the variable cpos) then we must ensure that the
corresponding state variable is assigned to the requested
value. This is done indirectly by requesting the action
variable for that state variable to be assigned to the specific
no-op action. It would be possible to describe the
synchronisation constraint as a single k-ary constraint
between the variables A1

j,..., Ak
j. However, the extensional

representation of this constraint would be too large as in

general it must describe all possible subsets of independent
actions. Hence, we decided to use k k-ary synchronisation
constraints each describing the requirements of some state
transition. Let i be the index of certain state variable. Then
for each action from the FSA representation of the i-th
state variable we define which actions are compatible in
other action variables of the same layer. If a is a real action
assigned to variable Ai

j then the constraint requires the
following assignment:
� if a affects the l-th state variable then Al

j = a,
� if a has a precondition (but not effect) in the l-th state

variable and b is the no-op action corresponding to
the value of the precondition then Al

j = b,
� if a does not use the l-th state variable then Al

j can be
assigned to any action independent of a or no-op.

If a is a no-op action then we assume that it is compatible
with all actions in other action variables to make the
extensional representation compact. Note that the
synchronisation constraints for other state variables may
connect this no-op action with real action as described
above. Though we described the synchronisation
constraints as k-ary constraints, in fact we can cut-off some
variables from the constraint, if these variables are not
really constrained. This significantly reduces the arity of
the constraint as the actions usually use a small number of
state variables in preconditions and effects.
 Figure 6 sketches the structure of the base constraint
model. In addition to above constraints there are also active
layer constraints connecting all action variables in each
layer and requesting at least one action to be a real action.

Figure 6. The structure of the constraint model, circles represent
the state variables, squares represent the action variables.

 To strengthen inference we add one more sequencing
constraint. Notice that action b can immediately follow
action a in the timeline for a given state variable if the
effect of a restricted to that state variable is compatible
with the precondition of b on the same state variable.
However, there might be another state variable where the
effect of a is in conflict with the precondition of b and
hence a cannot directly precede b. To discover this conflict
using inference, we include a binary action sequencing
constraint between all subsequent pairs of action variables
in each timeline (see Figure 6). Let a and b be two actions
from the FSA describing a certain timeline then the pair

…�
…�

synchronization
+ active layer

sequencing action sequencing

action variables state variables

12

(a,b) satisfies the action sequencing constraint if one of the
following conditions hold:
� a and b are identical no-op actions,
� a is a no-op action compatible with the precondition

of real action b,
� b is a no-op action that corresponds to the effect of

real action a,
� all effects of real action a are compatible with all

preconditions of real action b.
Figure 7 gives an example of all above mentioned
constraints for the planning problem described by the finite
state automata from Figure 4. One can easily check that the
instantiation of action variables shown in Figure 5 satisfies
all the constraints.

sequencing action sequencing
Srloc

j-1 Arloc
j Srloc

j Arloc
j Arloc

j+1

loc1 1 loc2 1 {-2,2}
loc2 2 loc1 2 {-1,1}
loc1 -1 loc1 -1 {-1,1}
loc2 -2 loc2 -2 {-2,2}

Scpos

j-1 Acpos
j Scpos

j Acpos
j Acpos

j+1

loc1 3 r 3 {-3,5}
loc2 4 r 4 {-3,6}

r 5 loc1 5 {-1,3}
r 6 loc2 6 {-2,4}

loc1 -1 loc1 -1 {-1,3}
loc2 -2 loc2 -2 {-2,4}

r -3 r -3 {-3,5,6}

synchronisation
Arloc

j Acpos
j Acpos

j Arloc
j

1 {-1,-2,-3} 3 -1
2 {-1,-2,-3} 4 -2

{-2,-1} {-3,…,6} 5 -1
 6 -2
 {-3,-2,-1} {-2,…,2}

Figure 7. The compact representation of ad-hoc constraints for
the planning problem from Figure 4.

Search Strategy
The constraint model can be accompanied by a specific
search strategy that guides the search algorithm exploring
the possible instantiations of the variables. This search
strategy is composed of two types of heuristics: the
variable ordering heuristic that recommends which variable
is instantiated first and the value ordering heuristic that
suggests which value is tried first.
 In our constraint model, we use only the action variables
as the decision variables participating in the search
procedure. The state variables are instantiated by means of
constraint propagation (local inference). There exist
several generally applicable variable ordering heuristics
typically based on the first-fail principle. Dom heuristic

(Golomb and Baumert 1965) that prefers instantiation of
the variables with the smallest domain is among the most
widely used. We slightly modified this heuristic in the
following way. We select only among the variables whose
domains contain at least one real action. The action
variables that can be instantiated only to some no-op action
are ignored during search. These variables are instantiated
by means of constraint propagation. Note that this decision
is done dynamically during search as constraint
propagation can remove some actions from the domain of
action variables. The value ordering heuristics are based
on the succeed-first principle, but there are no widely
accepted general value ordering heuristics. Obviously, it is
not clear in advance which value (action) belongs to the
solution. We used the following simple heuristic. First, the
domain of the selected variable is split into two parts: the
no-op actions and the real actions. This leads to binary
branching; the branch where the no-op actions remain in
the variable domain is explored first. The motivation was
that this will minimize the number of used actions (see the
experiments). If a variable whose domain contains only the
real actions is being instantiated then we simply try the
actions in the order in which the actions appear in the
problem description. Though the search strategy may seem
important for problem solving, it is the constraint model
that influences most the efficiency.

Experimental Results
We implemented the PaP constraint model using the clpfd
library of SICStus Prolog 4.1.2 and compared it with the
SeP planner built on top of the same constraint library. We
used selected planning domains from past International
Planning Competitions (STRIPS versions) for the
comparison. The experiments ran on 2.0 GHz Intel Xeon
CPU with 8GB RAM under Ubuntu Linux 8.04.2 (Hardy
Heron). Both planners run with the 30 minutes timeout.
 Table 1 reports the number of solved problem instances
in selected planning domains. PaP is better in all domains
but openstacks and elevator. For openstacks, it seems that
no-good recording helped SeP to solve the problems. For
elevator, we identified some overhead in the PaP constraint
model that caused longer runtime.
 Table 2 gives a more detailed view for three domains
with actual runtimes and plan lengths. PaP is slower in
blockworld problems because the plans cannot be
parallelized there and more constraints (compared to SeP)
cause overhead. In other domains the results are similar to
zenotravel and tpp domains. An interesting observation is
that PaP finds plans with identical or only slightly larger
number of actions in comparison to the shortest plans
found by SeP. We think that this is due to used search
strategy that prefers the no-op actions over the real actions.
We did not perform a direct comparison with the
Constance planner that beat SeP in domains such as
driverlog, zenotravel, and tpp, but the detailed results
reported in (Gregory, Long, and Fox 2010) show that PaP
achieves better performance at these domains.

13

domain SeP PaP
airport (15) 4 6
blocks (16) 7 7
depots (10) 2 2
driverlog (15) 4 12
elevator (30) 30 27
freecell (10) 1 3
openstacks (7) 5 0
rovers (10) 4 6
tpp (15) 4 8
zenotravel (15) 6 11

Table 1. The number of solved problems in each domain (the
numbers in parenthesis indicate the number of tried problems).

problem
plan length runtime (ms)

SeP
PaP

SeP PaP
par seq

blocks-p-4-1 10 10 10 160 190
blocks-p-5-0 12 12 12 1 670 4 600
blocks-p-5-1 10 10 10 1 050 4 790
blocks-p-5-2 16 16 16 37 420 34 160
blocks-p-6-0 12 12 12 8 720 59 370
blocks-p-6-1 10 10 10 9 760 74 450
blocks-p-7-0 20 20 20 926 820 -
tpp-p01 5 5 5 10 0
tpp-p02 8 5 8 20 10
tpp-p03 11 5 11 160 30
tpp-p04 14 5 14 2 110 20
tpp-p05 �17 7 23 - 100
tpp-p06 �15 9 29 - 4 110
tpp-p07 �14 9 38 - 3 170
tpp-p08 �14 9 44 - 5 930
zenotravel-p01 1 1 1 10 20
zenotravel-p02 6 5 6 60 50
zenotravel-p03 6 5 9 300 130
zenotravel-p04 8 5 11 970 130
zenotravel-p05 11 5 14 153 990 240
zenotravel-p06 11 5 12 530 390 510
zenotravel-p07 �12 6 16 - 560
zenotravel-p08 �10 5 15 - 1 690
zenotravel-p09 �11 6 24 - 145 760
zenotravel-p10 �12 6 24 - 252 040
zenotravel-p11 �9 6 16 - 41 780

Table 2. The length of found plans and the runtime (in
milliseconds) for selected planning problems.

Conclusions
The paper describes a novel constraint-based planner PaP
for parallel planning with multi-valued state variables.
Despite the simplicity of the constraint model and the
search strategy, the new planner beats significantly existing
constraint-based optimal sequential planners SeP and
Constance in most planning domains. We expect that
performance of PaP can be further improved by removing
some redundancy in constraints and by integrating
advanced techniques such as nogood recording.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract P103/10/1287. I would like
to thank Daniel Toropila for performing the experiments
and anonymous reviewers for valuable comments.

References
Bäckström, Ch., Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11(4): 625-655.
Barták, R., Toropila, D. 2008. Reformulating Constraint Models
for Classical Planning. Proceedings of The Twenty-First
International Florida Artificial Intelligence Research Society
Conference (FLAIRS-21), 525-530. AAAI Press.
Barták, R., Toropila, D. 2009. Revisiting Constraint Models for
Planning Problems. Proceedings of the Eighteenth International
Symposium on Foundations of Intelligent Systems (ISMIS ’09),
582-591, Springer-Verlag.
Blum, A. and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90: 281-300.
Do, M.B. and Kambhampati, S. 2000. Solving planning-graph by
compiling it into CSP. Proceedings of the Fifth International
Conference on Artificial Planning and Scheduling (AIPS), 82-91.
AAAI Press.
Golomb, S., Baumert, L. 1965. Backtrack programming. Journal
of the ACM 12: 516-524.
Grandcolas, S., Pain-Barre, C. 2007. Filtering, Decomposition
and Search Space Reduction for Optimal Sequential Planning.
Proceedings of AAAI-2007, 993-998, AAAI Press.
Gregory, P., Long, F., Fox. M. 2010. Constraint Based Planning
with Composable Substate Graphs. Proceedings of 19th European
Conference on Artificial Intelligence (ECAI), 453-458, IOS Press.
Helmert, M. 2006. The Fast Downward Planning System. Journal
of Artificial Intelligence Research 26: 191-246.
Huang, R., Chen, Y., Zhang, W. 2010. A Novel Transition Based
Encoding Scheme for Planning as Satisfiability. Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-10), 89-94. AAAI Press,
Kautz, H. and Selman, B. 1992. Planning as satisfiability.
Proceedings of ECAI, 359-363, IOS Press.
Long, D., Fox, M., 2003. Plan Permutation Symmetries as a
Source of Planner Inefficiency, Proceedings of Workshop of the
UK Planning and Scheduling Special Interest Group (PlanSIG).
Lopez, A. and Bacchus, F. 2003. Generalizing GraphPlan by
Formulating Planning as a CSP. Proceedings of IJCAI, 954-960.
Pralet, C., Verfaillie, G. 2009. Forward Constraint-Based
Algorithms for Anytime Planning. Proceedings of the Nineteenth
International Conference on Automated Planning and Scheduling
(ICAPS), 265-272, AAAI Press.
van Beek, P. and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. Proceedings of AAAI
Conference on Artificial Intelligence (AAAI-99), 585-590, AAAI
Press.
Vidal, V. and Geffner, H. 2004. Branching and Pruning: An
Optimal Temporal POCL Planner based on Constraint
Programming. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI-04), 570-577, AAAI Press.

14

