Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Myro-C++: An Open Source C++ Library for CS Education Using Al

John R. Hoare, Richard E. Edwards, Bruce J. MacLennan, and Lynne E. Parker
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville
{jhoare,redwarl5,maclennan,parker} @eecs.utk.edu

Abstract

In this paper we present Myro-C++, developed at the
University of Tennessee. Myro-C++ is a C++ port of
the Python Myro library that was written by the Insti-
tute for Personal Robots in Education (IPRE) at Geor-
gia Tech and Bryn Mawr College. Myro-C++ is pub-
licly available, open source software, released under the
GPLv3 open source license. At the time of writing, the
library has been used six semesters for the CS1 course
at the University of Tennessee, Knoxville. The library
contains functions for control of the robot and access to
sensor information, and provides the ability to display
the live camera image from the robot into a video win-
dow. This library is used as a teaching tool in our CS1
course where students learn basic programming funda-
mentals using multiple artificial intelligence based labs.
In addition to the software, the IPRE book, Learning
Computing with Robots, has been edited to use C++ ex-
amples and explanations, and is freely available. We
also present example programs that we use as labora-
tory assignments in our Introduction to Computer Sci-
ence course, which are also freely available.

Introduction

The Institute for Personal Robots in Education (IPRE) ap-
plies robots as a teaching tool in order to enhance student
interest and increase student enrollment in computer sci-
ence (Blank 2006). IPRE’s coursework and concepts use
Al techniques such as robot control paradigms, computer
vision, game playing, learning, etc. as vehicles to teach fun-
damental computer science concepts and skills (Kumar et
al. 2008). By using robots as a teaching tool, IPRE hopes to
give computer science students more hands on experience,
and generate more interest in the field. A strong value of
the program is to allow personal robots to be available for
all students so that they may be able to work with the robots
wherever they please. This approach gives “the freedom to
choose where [the students] work, and sometimes play or
show-off with the robots” (Summet et al. 2009). The robot
is treated as a peripheral to the computer; students do not
write low level software (i.e. the robot’s micro-controller),
but instead write software for a personal computer. Thus, the
robot merely is an accessory of the computer (IPRE 2007).

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

364

Figure 1: The Parallax Scribbler with IPRE Fluke attached.
This is the hardware configuration supported by both Myro
and Myro-C++. The Scribbler+Fluke combination is sold
for about $200 at the time of writing. (Photo courtesy of
IPRE)

The software that supports the IPRE’s coursework is
called Myro, and is written in Python by Georgia Tech and
Bryn Mawr College. This software has many capabilities,
including access to the robot’s sensors, and control of the
robot’s motors. Additionally, the Myro library supports sev-
eral other “helper functions” such as graphic displays and
drawing, GUI dialogue, text to speech support, and so on.

Some institutions, however, desire their introductory
computer science courses to teach C++ syntax and usage in
preparation for higher level courses. In such institutions per-
haps an overwhelming curriculum overhaul would be neces-
sary to use Python as an introductory language, or additional
instruction would be required in later courses where students
switch languages. To address this problem, we have created
a C++ version of the Myro software, which we call Myro-
C++. By using this C++ library, institutions are able to use
robots and the general IPRE philosophy and labs, while also
teaching C++ as an introductory language'.

The purpose of this paper is to increase awareness of the
Myro-C++ library, the associated coursework, and materials
which we have made freely available. We hope to enable
other instructors who wish to use the IPRE philosophy in

"The purpose of this paper is not to advocate for the use of
C++ over Python as a CS1 language. We instead wish to increase
awareness that we have created a C++ alternative to Myro.

their courses, but would otherwise be unable or unwilling
due to the Python programming language requirement.

In this paper, we will first discuss the hardware plat-
form used by Myro and Myro-C++. Then, we will dis-
cuss the features that Myro-C++ provides, including the new
VideoStream and Filters features. We will then give a brief
discussion about adapting the textbook Learning Computing
with Robots, edited by Deepak Kumar, as well as the asso-
ciated coursework, to use C++. Next, we present example
programs and uses that we have students implement in our
Introduction to Computer Science course. Finally, we will
give a brief discussion of the successfulness of the software,
and then conclude the paper and discuss future directions in
which we hope to go with the library.

Hardware

The robotic platform used is the Parallax Scribbler Robot,
with the IPRE fluke that attaches to the robot via the serial
port, as seen in Figure 1. The robot has two motors for dif-
ferential drive control at various speeds, three light sensors,
a stall sensor, two downward-facing line sensors, a speaker,
and a pen-port. Additionally, the robot has a BASIC Stamp
2 micro-controller, which runs custom firmware to commu-
nicate with the IPRE Fluke. The IPRE fluke adds infrared
rangers, bluetooth communication, and a color video cam-
era. The robot and fluke combination costs approximately
$200, which makes for an affordable platform that can be
purchased or loaned to every student.

As stated in the introduction, the robot functions as a
peripheral to a computer. While the robot contains a pro-
grammable micro-controller, students write their code for a
desktop computer. While running their program, the com-
puter sends control signals to the robot though the bluetooth
connection on the fluke. This way, students can leverage the
computing power and memory of the desktop computer, and
not be constrained by the limited resources of the robot’s
micro-controller.

Myro C++

While the Myro library allows users to program the
Scribbler robot using the Python programming language,
some institutions desire their introductory computer science
courses to teach C++ syntax and usage in preparation for
higher level courses. To address this situation, Myro-C++
was developed so the general philosophy of IPRE can be
leveraged while using the C++ language.

The Myro-C++ library is based on the Python Myro li-
brary, matching the API closely, when possible. While the
Myro-C++ library does not yet support all the functionality
that the Python Myro provides, such as speech or graphics
drawing, the library does currently support access to all of
the available sensors discussed in the Hardware section, as
well as all movement commands. Myro-C++ also includes
an interface to manipulate and display pictures taken with
the cameras, as well as the ability to stream the pictures from
the robot to a video window, called the VideoStream. The
VideoStream supports filters, which provides a way to per-
form image processing on the live video, and see the results

365

immediately. The library works on POSIX systems, and was
tested on linux, Mac OSX, and cygwin on windows.

Connecting and General Usage

When students want to connect to a robot, they have two
options:

1. Use connect(), and use the global robot variable.

2. Create a Scribbler object, connect to it manually, and use
that object.

Students generally use method (1), because it is simpler.
Method (2) could be used to allow for control of multiple
robots from one control program. A simple program that
drives the robot forward is shown below:

#include <Myro.h>
#include<iostream>
int main(){
connect ();
// Move the robot forward at full speed
// for 5 seconds
robot. forward (1,5);
// disconnect the robot
disconnect ();
return 0;

Sensors

Myro-C++ allows access to any sensor by means of a mono-
lithic get () function. Because C++ is a statically-typed lan-
guage, unlike Python, this function returns a void=, which
the user must cast into the appropriate return type. While
we support this interface in order to match the Myro in-
terface, it is not as convenient because it requires students
to both cast the return value, and manage the memory that
the get() function creates (i.e., must call delete). To ad-
dress this problem, we provide a function with a defined re-
turn type for each sensor, so its use is more straightforward.
Therefore, the recommended approach is to use the associ-
ated get function for the specific sensor. To access the light
sensors, for example, one would use the getLights () func-
tion, which works as follows:

vector<inmt> lights = robot.getLights ();
int left = lights.at(0);
int center = lights.at(1);

int right = lights.at(2);

There are similar “get” functions for the each of the sensors
on the robot.

Movement

The interface to move the robot is provided by several func-
tions, provided below.

e robot.motors(double leftSpeed, double rightSpeed)
Provides a way to directly set the speed of each motor on
the robot, until changed with another call of motors, or
some other movement command.

e robot. turnLeft (double speed, double time)

Figure 3: A still capture of the VideoStream window with
the invert filter active.

e robot. turnRight (double speed, double time)
e robot.forward(double speed, double time)
e robot.backward(double speed, double time)

The turnLeft (), turnRight (), forward (), and backward()
functions move the robot in the specified direction for the
specified amount of time.

VideoStream

A major feature provided by Myro-C++ is the VideoStream
object. This feature turns the robot into a mobile streaming
video platform. Opening the VideoStream is as simple as
creating a VideoStream object, and calling its startStream ()
function, as follows:

// Create the VideoStream Object,

// Provide it a pointer to the robot,

// and the Display mode (Color/BW/Blob)
VideoStream vs(&robot, VideoStream ::COLOR);
vs.startStream ()

// Do other things here,
// move the robot, etc.

// When finished with VideoStream
endStream ()

// Or just let the object be destroyed

VSs.

The VideoStream runs in its own thread and allows the
user to have their code perform other operations, such as

366

Figure 4: The VideoStream running with the picture-in-
picture filter, while tracking a large red box.

driving the robot around while using the VideoStream to
“see” what the robot “sees.” The example code above cre-
ates an image window like in Figure 2, which displays and
updates with the current image that the robot can see. With
no other communications, the VideoStream window updates
approximately 1.8 frames per second.

Filters

In addition to providing an interface for students to turn their
robots into mobile cameras, the Myro-C++ library provides
an interface for the students to create filters that modify
the images before being displayed. For instance, Figure 3
shows a filter that inverts the image before displaying in the
VideoStream window. Creating a filter for the VideoStream
is done by implementing the filter () function of an inher-
ated Filter class. The code for the invert filter (Figure 3) is
shown below:

class InvertFilter: public Filter {

public:

virtual void filter (Picture * image) {
int height = getHeight(image);
int width = getWidth (image);

Pixel temp;
for(int h =
for(int w =

0; h < height/2; h++) {
0; w < width; w++) {
temp = getPixel (image,w,h);
setPixel (image ,w,h,
getPixel (image ,w,(height —1)—h));
setPixel (image ,w,(height —1)—h, temp);
}
}
}
}s

// In main() after the VideoStream has been created
InvertFilterx inv =
vs.addFilter (inv);

new InvertFilter ();

Filters can be added or removed from the VideoStream at
any point via the addFilter () and delFilter () functions.
This allows students to experiment dynamically with differ-
ent types of filter combinations. These image filters provide

(a) Without Light Filter

(b) With Light Filter

Figure 5: Figure (a) depicts the gray scale VideoStream without the light filter applied. Figure (b) depicts the gray scale
VideoStream with the light filter applied. The light filter draws only the brightest region of the image while drawing the rest of

the image black.

a mechanism for students to experiment with image pro-
cessing techniques and receive immediate visual feedback
through the VideoStream (Figure 2).

In addition to providing an interactive learning experi-
ence, students can use the filter interface to debug their as-
signments that involve basic image processing algorithms.
For instance, the students have a light following assignment
that requires that students use the robot’s camera to follow
a flash light. In the assignment, students can debug their
light following algorithm by creating a filter that uses their
light following function to determine and draw the bright-
est image region, and draw the darker regions black (Fig-
ure 5). By providing real-time feedback to students through
the VideoStream, students are able to debug their light fol-
lowing algorithm more efficiently and with less frustration.

When using blob-detection capabilities of the IPRE
Fluke board (using robot.takePicture(’blob”)), the picture-
in-picture filter provides a simple way to see both the “blob”
picture, as well as a normal “color” picture. The picture-in-
picture filter displays the black and white blob image from
the robot with the original color image scaled down in the
top right corner (Figure 4). This allows the students to as-
sociate the actual scene with the blob tracking scene that
the robot is currently reporting. The visual feedback from
the picture-in-picture filter helps students understand which
components of the blob belong to the actual object they want
the robot to follow, and debug their blob following algorithm
accordingly.

The Filter has a lightweight and flexible interface that al-
lows novice students to experiment with basic image pro-
cessing techniques and receive immediate visual feedback.
Ultimately, the filter interface helps students have a more in-
teractive learning experience, which would hopefully lead
to an increasing student interest in Computer Science. In
addition, the filter interface provides a mechanism to help
extend the IPRE philosophy into higher level computer sci-
ence courses.

367

Compiling

Unlike Python, C++ is a compiled language. Before run-
ning any code, it is necessary to compile it, and link against
the Myro-C++ library. Myro-C++ provides a mechanism to
make this process straightforward, using the “pkg-config”
program, as well as a “myro-cpp-config” shell script. If we
want to compile a program, “dance.cpp”, we use the follow-
ing at the command line:

g++ ‘myro—cpp—config —cflags —1libs * dance.cpp —o dance

This will create an executable named “dance,” that can now
be executed. Instead of repeatedly running the command
above, we provide students with a makefile for each lab;
students compile their programs by simply running “make.”
Example makefiles are provided with Myro-C++.

Open Source Software

Myro-C++ has been released as an open source package,
under GPLv3, so any interested party can download, in-
stall, and/or modify the software. Because the software
is open source, students are able to download and view
the source code to see how the library functions. Also,
parties interested in improving Myro-C++ are able to get
the source code and add additional functionality to the li-
brary. Students have found and used functions for per-
sonal projects that were not documented or used for the nor-
mal laboratory assignments by browsing the source code
and Doxygen documentation. The software is available
to download in source form, an OS X installer form, and
packed for Ubuntu Linux operating systems via a Personal
Package Archive hosted on Launchpad at http://www.
launchpad.net/myro—c++. Additionally, the soft-
ware can be compiled on windows, through the use of cyg-
win, which provides a linux-like environment for windows.
Future versions of Myro-C++ are planned to run natively in
windows, without the use of cygwin.

Adapting the IPRE Curriculum to C++

In addition to developing a C++ version of Myro, it was
necessary to adapt the IPRE curriculum to C++. Primarily
this involved modifying the textbook Learning Computing
with Robots, edited by Deepak Kumar, to use C++ exam-
ples rather than Python examples. For the most part this
was straightforward, but there were occasional challenges.
For example, since Python is an interpreted, dynamically
typed language, it is easier to present to beginning students
than C++, with its elaborate static typing. Nevertheless, in
converting the text to C++ we tried to adhere to the origi-
nal book’s philosophy of introducing ideas in the simplest
way possible and limiting C++ details to what the student
needs to know at a given point. The resulting book, Learn-
ing Computing with Robots in C++, is available on-line at
http://myro-cpp.sf.net. In addition, we decided
to leverage existing IPRE curricular material as much as pos-
sible and to follow Georgia Tech’s lead in its introductory
IPRE-based computer science course, which uses How to
Think Like a Computer Scientist: Learning with Python by J.
Elkner, A. B. Downey, and C. Meyers in addition to Learn-
ing Computing with Robots. Therefore we chose Downey’s
How To Think Like A Computer Scientist: Learning with
C++, which is available under the GNU Free Documenta-
tion License; a few chapters of the available edition required
significant updating to conform to standard C++. The class
lectures proceed through the two books in parallel, often al-
ternating chapters, and the laboratory exercises are coordi-
nated with the lectures.

Example Programs and Uses (Labs)

In this section we present applications that are used in
our Introduction to Computer Science course. Students
implement these applications using Myro-C++, often with
no prior programing experience. All of these labs and
more, are available athttp://myro-cpp.sf.net. The
list of presented labs is not exhaustive; many of the labs
and curriculum at http://wiki.roboteducation.
org/Educator_Resources can be easily adapted to
use Myro-C++.

Line Following

Using the line sensors located on the bottom of the robot, the
students write a line following program to follow a path that
is written on the ground. This is commonly implemented as
a state machine, and students do a lot of hands on tweaking
of the robot to try to get their robot to complete the course in
the shortest amount of time. The line following task is often
one of the students’ favorite, as it provides a lot of freedom
for them to try new approaches for completing the course
quickly. The line following “brain” is implemented using
conditional statements and loops, based on the state of the
Sensors.

Braitenberg Vehicles

Some of Valentino Braitenberg’s most well-known work
centers on thought experiments with what he calls “vehi-
cles.” These vehicles have simplistic controls, yet exhibit

368

apparently complex behavior. Each experiment details a ve-
hicle that has a small set of sensors, and how those sensors
can be connected to the vehicle’s motors such that the con-
nections mirror the neurological connections in living crea-
tures. The resulting vehicles seem to be capable of complex
behaviors like fear, aggression, love, free will, etc. (Brait-
enberg 1986). Using the Myro-C++ library, the aggressive
vehicle is implemented in the following function:

void aggressive (int seconds){
while (timeRemaining (seconds)) {
robot. getLight(”left”);
robot.getLight(”right”);
robot.motors(normalize(r),

}

robot.move(0,0);

}

int 1 =
int r =
normalize(1));

The normalize function converts light sensor readings into
the range of the motors. Different normalize functions can
result in different behaviors of the robot. In this lab, stu-
dents learn to write functions and use loops by implement-
ing the aggressive, alive, etc., vehicles and creating a menu
to choose which vehicle should run.

Light Following

While the Braitenberg vehicles follow light using the light
sensors, by using simple image processing techniques, stu-
dents can use the camera to follow light. Students write code
to separate the image taken by the robot into regions, and de-
termine which is the brightest region by using nested loops
iterating through every pixel. Using what was calculated as
the brightest region, students then have the robot execute the
best appropriate action of turning left, turning right, or trav-
eling forward.

Blob Following

Similar to the Light Following assignment, students train
the robot to detect a blob in an image. Myro-C++ supports
taking a “blob” type picture, which once trained, returns a
black and white image where white is the detected color, and
black is not (Figure 4). Using the blob picture and following
the same approach from the light following assignment, the
robot can be track a specific color. To train the blob detec-
tion, students must have their program present the user with
an image that has had its training area outlined, and ask the
user if the image is good.

Text Command Driving

For this example, students create a well-defined language in
which they can tell the robot what to do. Examples of com-
mands that are given are “turn left 90”, causing the robot
to turn left 90 degrees. Students implement a parsing func-
tion which parses the input string and makes the robot per-
form the correct action, given the command. Students im-
plement two “modes” of operation: a manual drive mode,
where a VideoStream window is opened, and the students
tele-operate the robot by typing commands to the robot, and
an auto-drive mode where the robot reads commands from a
student provided “action” file. This lab requires students to

Figure 6: A panoramic image created using a least-squares approach to calculate overlap, and using the Myro-C++ interface to
take the pictures and move the robot, as well as to access the pixel data of the images.

write robust code that can handle erroneous input, as well as
write a string tokenizer for parsing the input strings.

Panoramic Creation

Students use the robot as a platform to take multiple images
and stitch them together into a panoramic image as illus-
trated in Figure 6. This lab consists of two tasks to be ac-
complished by students (split into two separate laboratory
assignments.) For the first task, students are provided a vec-
tor of images, along with a vector of overlap points. Stu-
dents copy the non-overlapping portions of the individual
images to form a final, panoramic image. In the second task,
students write a function that calculates the overlap points
between each pair of images, using a least squares error ap-
proach comparing the columns of two images to find the two
most alike columns. Students must use nested loops, as in
the Light/Blob following labs; however, this lab adds more
complication, as they are not only accessing the data in the
picture, but they must now copy it. Additionally, students
are provided with a mathematical formula to calculate the
least squared error, and must convert this to C++ code.

Student Response

It is difficult to provide information on the effectiveness
of Myro-C++ as a teaching tool beyond anecdotal claims.
Nevertheless, Myro-C++ appears to function effectively as a
teaching tool, and has inspired several CS1 students to pur-
sue independent studies so they can continue working with
the robots beyond the CS1 course. A more through analysis
of the effectiveness of using robots for CS1 using Myro-C++
is the topic of future work.

Conclusions and Future Work

In this paper we have presented Myro-C++, which is
released open source at http://myro-cpp.sf.net.
This software package allows users to program the Paral-
lax Scribbler Robot with IPRE Fluke board in C++. Myro-
C++ has additional functionality that is not available in the
Python Myro, such as the VideoStream and Filter compo-
nents. The library is actively maintained, and will be up-
dated with additional functionality and bug fixes. Addi-
tionally, we have modified the the textbook Learning Com-
puting with Robots, edited by Deepak Kumar, to use C++
examples, resulting in Learning Computing with Robots in

369

C++. Finally, we presented laboratory assignments that
are given to students in our Introduction to Computer Sci-
ence courses. All of these materials are available in full at
http://myro-cpp.sf.net.

The next version of Myro-C++ will include a graphics
drawing library, similar to that in the Python Version of
Myro. Furthermore, future versions of Myro-C++ will not
have the requirement of using Cygwin, and will be supported
in windows natively. We also hope to test and support the
new Scribbler2 platform.

Acknowledgements

We would like to thank Georgia Tech and IPRE which pro-
vided the initial funding for this project. We would also like
to thank the University of Tennessee Electrical Engineer-
ing and Computer Science Department for partially fund-
ing Myro-C++ development, and additional coursework. We
would also like to thank Genevieve Walker and Allison
Thompson for helping to develop the initial robotics projects
used in our Introductory Computer Science course.

References

Blank, D. 2006. Robots make computer science personal.
Communications of the ACM 49(12):25-27.

Braitenberg, V. 1986. Vehicles: Experiments in synthetic
psychology. The MIT press.

IPRE. 2007. 2007 Annual Report.
//www.roboteducation.org/Files/
2007-AnnualReport.pdf.

Kumar, D.; Blank, D.; Balch, T.; O’Hara, K.; Guzdial, M.;
and Tansley, S. 2008. Engaging computing students with Al
and robotics. In AAAI Spring Symposium Series, presented
at the Symposium on Using Al to Motivate Greater Partici-
pation in Computer Science, tech. report SS-08, volume 8.
Kumar, D. 2008. Learning Computing With Robots in C++.
Available at http://myro-cpp.sourceforge.net.
Myro-C++ Main Project Page.
sourceforge.net.
Summet, J.; Kumar, D.; O’Hara, K.; Walker, D.; Ni, L.;
Blank, D.; and Balch, T. 2009. Personalizing CS1 with
robots. In Proceedings of the 40th ACM technical sympo-
sium on Computer science education, 433—437. ACM.

http:

http://myro-cpp.

