
Translating Robotics Course Materials from Elite Research I 

Xuejun Liang
Department of Computer Science, Jackson State University 

1400 J. R. Lynch Street, Jackson, MS 39217
xuejun.liang@jsums.edu

Abstract
Teaching an upper-level undergraduate robotics course at 
Historically Black Colleges and Universities (HBCUs) is 
challenging. The lack of suitable teaching materials is one 
of the biggest challenges, although there are many great 
masterpieces in developing robotics course materials, which 
are, however, generally developed for teaching students at 
elite Research I universities. This paper presents ideas and 
details in adopting and revising these course materials and 
creating upper-level undergraduate robotics course materials 
that are suitable for underrepresented students.

Introduction
Teaching an upper-level undergraduate robotics course at 
Historically Black Colleges and Universities (HBCUs) is 
challenging. The lack of suitable teaching materials is one 
of the biggest challenges, although there are many great 
masterpieces of robotics courses. For example, there is an 
online list of excellent robotics course materials (Dollar et 
al., 2010). But, these materials are prepared for teaching 
students at elite Research I institutions. Students are 
expected to learn and figure out many details on their own 
and often required to complete their robot programming 
projects from scratch. These expectations and requirements 
are too high for HBCU students. Therefore, translating 
these materials into HBCU courses and making them 
suitable for HBCU students learning is necessary.

The overall approach of the translation is breaking down 
big tasks into pieces and providing more detailed in-class 
teaching materials, including programming fundamentals, 
formulas and algorithms, skeleton codes of robot control 
programs, and step-by-step guidance for doing projects.
Due to the space limit, three major robot programming 

Copyright © 2011, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved.

projects are selected to report here. Our whole robotics 
course materials are available online and can be found at 
http://www.jsums.edu/robotics/CSC499-539-10F/.

Robot Programming Projects
This section will present some details of the selected three
robot programming projects. They are waypoint following, 
target searching, and path planning. All three projects are 
adopted and revised from Prof. Parker’s robotics course 
entitled Software for Intelligent Robots (Dollar et al., 
2010). Note that the Player/Stage robot programming 
framework is used in these projects.

P1. Waypoints Following
The task of this project is to read a sequence of waypoints 
from a data file and then drive the robot to each waypoint 
one after another. The project is required to use the robot’s 
odometry data and the servo-loop control approach. The 
following steps will guide students walking through the 
project.
1. Give students a skeleton world file and let them add 

details in the given file according to the requirements
such as world size, simulation window size, etc.

2. Give students a skeleton client code which provides the 
program structure. The client program gets a sequence 
of waypoints from a file by calling the getWaypoints
function and then enters an outer loop to iterate through 
each waypoint. The inner loop is a control loop to drive 
the robot moving to a waypoint. Students only need to 
complete three C++ functions:
� getWaypoints. It reads a sequence of waypoints from 

a data file and stores them into a queue.
� gotoWaypoint. It computes the distance and angle 

from the robot's current pose to the waypoint. If the 
distance is small enough, then return true. This will 
indicate that the robot has reached the waypoint. 
Otherwise, return false.

Universities to Historically Black Colleges and Universities

599

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



� translate. It applies the servo-loop control rules to 
compute the speed and the turn rate based on the 
distance and the direction of motion.

Please note that in order to help our students to complete 
these three functions, several points are worth to mention. 
First, students need to have C++ programming skills on 
File I/O and using queue data structure, and understand the 
call-by-value and call-by-reference. Second, students need 
to know how to obtain the robot’s current pose from the 
robot’s odometry (encoder) data. Third, students need to 
know how to compute the distance between two points, the 
slope of a straight line, and the angle between two lines, 
and understand the difference between degree and radian. 
Fourth, students need to understand the rule-based servo-
loop control approach in order to determine an updated 
speed and turn rate to drive the robot based on the distance 
and angle between robot and waypoint.

P2. Targets Searching
This project will generate robot control by sequencing and 
combining three behaviors: wander, avoid obstacles, and 
go to beacons. The final robot behavior should cause the 
robot to wander around avoiding obstacles until it detects a 
previously unvisited beacon. Then, it moves to the location 
of the beacon. Once the beacon is reached, the robot should 
go back into a wander mode to search for another beacon. 
This will repeat infinitely. The following steps will guide 
students walking through the project.
1. Give students a skeleton world file and let them add 

details for defining and creating beacons and robot.
2. Give students a skeleton client code which provides the 

program structure. In the control loop, after updating 
the proxies, three functions: wander, avoidObstacles, 
and gotoBeacon are called to active the three behaviors. 
Then, if no beacon is found, combine (weighted vector 
sum) the outputs from wander and avoidObstacles to 
get a single output vector, otherwise, combine outputs 
from gotoBeacon and avoidObstacles. Finally, the 
translate function is called to get a speed and a turn rate 
to drive the robot. Students only need to complete three 
C++ functions:
� wander. It generates a new random vector of distance 

and direction of motion every 3 seconds. (Note that 
the control loop runs at about 10Hz, so 30 loop 
iterations is about 3 second.)

� avoidObstacles. It generates a vector of distance and 
direction of motion to avoid the obstacle, if there is 
an obstacle in front detected by using laser scanner. 
Otherwise, it generates a zero vector. Note that once 
starting avoiding, it is needed to continue avoiding 
for 2 seconds. 

� gotoBeacon. It returns true whenever an unvisited 
beacon is detected by using the Fiducial detector. 
Otherwise, return false. When an unvisited beacon is 
detected, it computes a vector of distance and angle 
from the robot’s current pose to the beacon.

Note that the translate function has been implemented in 
P1. The function to combine (weighted sum) two vectors is 
given. In order to help our students to complete these three 
C++ functions, several points are worth to mention. First, 
students need to know how to produce a random number in 
a given range and how to do the coordinate transformation 
(rotation and shift) between the world coordinate and the 
robot’s coordinate. Second, students need to know the 
implementation skills for the wander function to generate a 
new random vector when it is called every 30 times and for 
the avoidObstacle function to continue generating the same 
vector for 20 times once starting avoiding. Third, students 
need to know how to use the list data structure in C++.

P3. Path Planning
The task of this project is to implement the wavefront path 
planer. The path planner accepts as input a user's goal point 
and generates the waypoints of a path from a given starting 
point to the goal point. Then, the avoid obstacles behavior 
and the go to waypoint behavior from the previous projects 
are used to drive a robot to follow the path. The following 
steps will guide students walking through the project.
1. Give students a skeleton world file and let them fill in

information for simulation window and map.
2. Give students a skeleton code of the wavefront path 

planner, which provides all detailed implementation of 
the planner except the following three functions, which 
are left for the student implementation.
� grow. It grows the obstacles in the grid map for a 

single step, i.e. one grid cell farther. It scans the grid 
cells. If a cell is occupied, then mark the unoccupied 
neighbors of the cell as occupied. 

� propagate. It propagates the wavefront one grid cell 
farther. It starts from the grid cells with value i and 
the propagated cells get the value i+1.

� nextWaypoint. It computes the next waypoint. The 
next waypoint is a neighboring cell of the current 
waypoint and its value is 1 less than the value of the 
current waypoint cell.

Note that the implemented portion of the planner for 
students includes the conversion between the pixel map 
representation and the grid map representation of an image, 
the conversion between the world coordinate and the image 
coordinate, and the waypoints relaxing. In order to help our 
students to complete the three functions, two points are still 
needed to make. First, students need to know the grid cell 
representation of an image, the process of scanning the grid 
cells, and how to process the edge cells and corner cells 
easily. Second, students really need to pay attention to not 
accessing an array element outside the array boundaries.

References
Dollar, A., Rus, D., and Fiorini, P. (2010). Robotics
Courseware, Available at http://roboticscourseware.org

600




