
Learning Temporal Nodes Bayesian Networks

Pablo Hernandez-Leal, L. Enrique Sucar and Jesus A. Gonzalez
National Institute of Astrophysics, Optics and Electronics

Tonanzintla, Puebla, Mexico

Abstract

Temporal Nodes Bayesian Networks (TNBNs) are an alterna-
tive to Dynamic Bayesian Networks for temporal reasoning,
that result in much simpler and efficient models in some do-
mains. However, methods for learning this type of models
from data have not been developed. In this paper we propose
a learning algorithm to obtain the structure and temporal in-
tervals for TNBNs from data. The method has three phases:
(i) obtain an initial approximation of the intervals, (ii) obtain
a structure using a standard algorithm and (iii) refine the inter-
vals for each temporal node based on a clustering algorithm.
We evaluated the method with synthetic data. Our method ob-
tains the best score in terms of the structure and a competitive
predictive accuracy.

1 Introduction

Bayesian Networks (Pearl 1988) are an alternative to deal
with uncertainty. They have proven to be successful in var-
ious domains such as medicine (Pang et al. 2004). How-
ever, these models cannot deal with temporal information.
For this, an extension called Dynamic Bayesian Networks
(DBNs) was introduced. DBNs can be seen as multiple
slices of a static BN over time, with links between adjacent
slices. Nonetheless, these models can become quite com-
plex, in particular, when only a few important events occur
over time.

Temporal Nodes Bayesian Networks (TNBNs) (Arroyo-
Figueroa and Sucar 1999) are another extension of Bayesian
Networks. They belong to a class of temporal models known
as Event Bayesian Networks (Galán et al. 2007). TNBNs
were proposed to manage uncertainty and temporal reason-
ing. In a TNBN, each Temporal Node has intervals associ-
ated to it. Each node represents an event or state change of a
variable. An arc between two Temporal Nodes corresponds
to a causal-temporal relation. One interesting property of
this class of models, in contrast to Dynamic Bayesian Net-
works, is that the temporal intervals can differ in number and
size.

TNBNs had been used in diagnosis and prediction of tem-
poral faults in a steam generator of a fossil power plant
(Arroyo-Figueroa and Sucar 1999). The problem with this
approach is that there does not exist an algorithm to learn

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TNBNs. Then the model has to be obtained from external
sources such as domain experts. This can be a hard and
prone to error task. In this paper, we propose a learning
algorithm to obtain the structure and the temporal intervals
for TNBNs from data.

The learning algorithm consists of three phases. In the
first phase, we obtain an approximation of the intervals using
an algorithm such as Equal-Width discretization (EWD) or
K-means clustering. For the second phase, the BN structure
is obtained with the structure learning algorithm introduced
in (Cooper and Herskovits 1992). The last step is performed
to refine the intervals for each Temporal Node. Our algo-
rithm obtains a number of possible sets of intervals for each
configuration of the parents by clustering the data based on
a Gaussian mixture model. It then selects the set of intervals
that maximizes the prediction accuracy. We apply our algo-
rithm to a synthetic medical case. The data was generated
with different distributions. We compare our algorithm with
two baselines: K-means and Equal-Width discretization. We
also compare it to the algorithm proposed in (Friedman and
Goldszmidt 1996). In the experiments, our algorithm ob-
tains the best score in terms of structure and a competitive
predictive accuracy.

2 Related Work

Bayesian Networks (BN) are a successful model for deal-
ing with uncertainty. However, static BNs are not suited
to deal with temporal information. For this reason, Dy-
namic Bayesian Networks (Dagum, Galper, and Horvitz
1992) were introduced. In a DBN, a copy of a base model
is made for each time stage. These copies are linked via a
transition network. In this transition network is common that
only links between consecutive stages are allowed (Markov
property). The problem is that DBNs can become very com-
plex. This is unnecessary when dealing with problems for
which there are only a few changes for each variable in the
model. Moreover, DBNs are not capable of managing dif-
ferent levels of time granularity. They usually have a fixed
time interval between stages.

In TNBNs, each variable represents an event or state
change. So, only one (or a few) instance(s) of each variable
is required, assuming there is one (or a few) change(s) of a
variable state in the temporal range of interest. No copies of
the model are needed, and no assumption about the Marko-

608

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Algorithm 1 Algorithm introduced in (Dagum, Galper, and
Horvitz 1992).
Require: An initial discretization.
Ensure: A discretization policy.

1: Push all continuous variables onto a queue Q
2: while Q is not empty do
3: Remove first element X from Q
4: Compute discretization policy for X
5: if score with new discretization < score with old dis-

cretization then
6: Use new discretization
7: For all Y interacting with X , if Y /∈ Q, push Y

onto Q.
8: end if
9: end while

10: return Discretization policy

vian nature of the process is made. TNBNs can deal with
multiple granularity, because the number and the size of the
intervals for each node can be different.

There are several methods to learn BNs from data
(Neapolitan 2004). Unfortunately, the algorithms used to
learn BNs cannot deal with the problem of learning tempo-
ral intervals. Then, these cannot be applied directly to learn
TNBNs.

To the best of our knowledge, there is only one previ-
ous work that attempts to learn a TNBN. Liu et al. (Liu,
Song, and Yao 2005) proposed a method to build a TNBN
from a temporal probabilistic database. The method ob-
tains the structure from a set of temporal dependencies in
a probabilistic temporal relational model (PTRM). A Tem-
poral Relational Model (TRM) is a relational model with
temporal attributes. Let R(U) be a TRM, then a PTRM is
a TRM extended by adding a probabilistic attribute p, there-
fore R(U, p) is a PTRM. In order to build the TNBN, they
obtain a variable ordering that maximizes the set of con-
ditional independence relations implied by a dependency
graph obtained from the PTRM. Based on this order, a di-
rected acyclic graph corresponding to the implied indepen-
dence relations is obtained. This graph represents the struc-
ture of the TNBN. They assume a known probabilistic tem-
poral relational model from the domain of interest, which is
not always the case. Building this PTRM could be as diffi-
cult as building a TNBN. They do not learn the intervals of
each node. In contrast, our approach constructs the TNBN
directly from data, it also learns the intervals for each node.

Another related work is (Friedman and Goldszmidt 1996).
Here the idea is to learn the structure of a BN while discretiz-
ing the continuous variables. For this, an score based on the
Minimum Description Length (Lam and Bacchus 1994)) is
proposed. The score takes into account the parameters, the
structure, and the discretization policy. With this score, a
search for the best discretization is done for each continu-
ous variable. The algorithm scores the Ni midpoints of each
variable. Then, a top-down refinement is performed using
a greedy search strategy. Depending on the network struc-
ture, this approach can become complex if the continuous

variables interact with each other (if a variable does not in-
teract with other variables it can be discretized separately).
For this reason, the approach is to discretize one variable at
a time and leave the rest as discrete and fixed. Therefore,
it is not guaranteed to find an optimal discretization. In or-
der to learn the structure of the network, all the nodes are
first discretized and later, the structure learning algorithm
is applied. This alternating process is performed until con-
vergence. The algorithm for discretizing several variables
is shown in Algorithm 1. This algorithm may become too
complex in cases where there exist a lot of midpoints in the
variables. This may also happen if the network has many
edges (several nodes interacting with each other).

3 Temporal Nodes Bayesian Networks

A Temporal Nodes Bayesian Network (TNBN) (Arroyo-
Figueroa and Sucar 1999; Galán et al. 2007) is composed
by a set of Temporal Nodes (TNs). TNs are connected by
edges, each edge represents a causal-temporal relationship
between TNs. There is at most one state change for each
variable (TN) in the temporal range of interest. The value
taken by the variable represents the interval in which the
event occurs. Time is discretized in a finite number of inter-
vals, allowing a different number and duration of intervals
for each node (multiple granularity). Each interval defined
for a child node represents the possible delays between the
occurrence of one of its parent events (cause) and the corre-
sponding child event (effect). Some Temporal Nodes do not
have temporal intervals, these correspond to Instantaneous
Nodes. Formally,

Definition 1 A TNBN is defined as a pair B = (G,Θ). G is
a Directed Acyclic Graph, G = (V,E). G is composed of
V, a set of Temporal and Instantaneous Nodes; E a set of
edges between Nodes. The Θ component corresponds to the
set of parameters that quantifies the network. Θ contains the
values Θvi = P (vi|Pa(vi)) for each vi ∈ V; where Pa(vi)
represents the set of parents of vi in G.

Definition 2 A Temporal Node, vi, is defined by a set of
states S, each state is defined by an ordered pair S = (λ, τ),
where λ is the value of a random variable and τ = [a, b] is
the interval associated, with initial value a and final value
b, that corresponds to the time interval in which the state
change occurs. In addition, each Temporal Node contains
an extra default state s = (’no change’, ∅), which has no in-
terval associated. If a Node has no intervals defined for all
its states then it receives the name of Instantaneous Node.

The following is an example of a TNBN based on
(Arroyo-Figueroa and Sucar 1999), its corresponding graph-
ical representation is shown in Figure 1.

Example 1 Assume that at time t = 0, an accident occurs,
a Collision. This kind of accident can be classified as severe,
moderate and mild. To simplify the model we will consider
only two immediate consequences for the person involved in
the collision, Head Injury (HI) and Internal Bleeding (IB).
HI can take two values true or false, IB can be gross, slight
or false. These three are instantaneous events, no interval

609

Figure 1: The TNBN for Example 1. Each oval represents
a Temporal Node. The three upper nodes (Collision, Head
Injury and Internal Bleeding) are Instantaneous Nodes, so
they do not have temporal intervals. The other five nodes
are Temporal Nodes with intervals associated to them. The
Default state corresponds to the initial value of no change.

appears in these nodes. These events will generate subse-
quent changes, for example the HI event might generate an
Edema and later as a consequence it may produce Dilated
Pupils. These events are not immediate, they depend on the
severity of the accident, therefore, they have temporal inter-
vals associated. For the IB node two events may occur: an
increase in Blood Pressure and an increase in Heart Rate,
those will lead to Shock, these are also Temporal Nodes. For
this example the intervals represent minutes and a doctor
would appreciate not only the information of the occurrence
of the events but also the time they appear, in order to obtain
a better evaluation/diagnosis of the person.

4 Learning Algorithm

First, we present the interval learning algorithm for a TN.
We initially assume that we have a defined structure. Later,
we present the whole learning algorithm.

4.1 Interval Learning

Initially, we will assume that the events follow a known dis-
tribution. With this idea, we can use a clustering algorithm
for the temporal data. Each cluster corresponds, in princi-
ple, to a temporal interval. The algorithm is presented first
by ignoring the values of the parent nodes (first approxima-
tion). Later, we refine the method by incorporating the par-
ent nodes configurations.

4.2 First Approximation: Independent Variables

Our approach uses a Gaussian mixture model (GMM) to per-
form an approximation of the data, therefore we can use
the Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977). EM works iteratively using two
steps: (i) The E-step tries to guess the parameters of the

Gaussian distributions, (ii) the M-step updates the param-
eters of the model based on the previous step. By applying
EM, we obtain a number of Gaussians (clusters), specified
by their mean and variance. For now, assume that the num-
ber of temporal intervals (Gaussians), k, is given. For each
TN we have a dataset of points over time, and these are clus-
tered using GMM, to obtain k Gaussian distributions. Based
on the parameters of each Gaussian, each temporal interval
is initially defined as: [μ− σ, μ+ σ].

Now we deal with the problem of finding the number of
intervals. The ideal solution has to fulfill two conditions:
(i) the number of intervals must be small in order to reduce
the complexity of the network, and (ii) the intervals should
yield good estimations when performing inference over the
network. Based on the above, our approach uses the EM
algorithm with the parameter for the number of clusters in
the range from 1 to �, where � is the highest value (for the
experiments in this paper we used � = 3).

In order to select the best set of intervals, we evaluate the
network. This corresponds to an indirect measure of the
quality of the intervals. In particular, we used the Rela-
tive Brier Score to measure the predictive accuracy of the
network. The selected set of intervals for each TN, are
those that maximize the Relative Brier Score. The Brier
Score is defined as BS =

∑n
i=1 (1− Pi)

2, where Pi is
the marginal posterior probability of the correct value of
each node given the evidence. The maximum brier score
is BSmax =

∑
n 1

2. The Relative Brier Score (RBS) is de-
fined as: RBS (in %) = (1 − BS

BSmax
) × 100. The RBS,

is obtained by instantiating a random subset of variables in
the model, predicting the unseen variables, and obtaining the
RBS for these predictions.

4.3 Second Approximation: Considering the
Network Topology

Now we will construct a more accurate approximation.
For this, we use the configurations of the parent nodes.
The number of configurations of each node i is qi =∏

Xr∈Pa(i) |sr| (the product of the number of states of the
parents nodes).

Formally, we construct partitions of the data (disjoint sets
of values), one partition for each configuration. Then we
get the combinations taking 2 partitions pi,pj from the total,
this yields q(q − 1)/2 different combinations of partitions
(we used only binary combinations in order to reduce the
computation). For pi and pj we apply the first approxima-
tion and obtain � sets of intervals for each partition, the last
step is to obtain the combination of this sets of intervals,
that yield �2 sets of final intervals for each pi,pj . After this
process we have different sets of intervals, that we need to
adjust. This adjustment is described in Algorithm 2.

Algorithm 2 is described next. For each set of intervals
sort them by their starting point, then check if there is an
interval contained in another interval. While this is true, the
algorithm obtains an average interval, taking the average of
the start and end points of the intervals and replacing these
two intervals with the new one. Next we refine the intervals
to be continuous by taking the mean of two adjacent values.

610

An example of this algorithm is presented in Section 4.6.

Algorithm 2 Algorithm to adjust the intervals.
Require: Array of intervals sets
Ensure: Array of intervals adjusted

1: for Each set of intervals s do
2: sortIntervalsByStart(s)
3: while Interval i is contained in Interval j do
4: tmp=AverageInterval(i,j)
5: s.replaceInterval(i,j,tmp)
6: end while
7: for k = 0 to number of intervals in set s -1 do
8: Interval[k].end=(Interval[k].end + Inter-

val[k+1].start)/2
9: end for

10: end for

As in the first approximation, the best set of intervals
for each TN is selected based on the predictive accuracy in
terms of the RBS. However, when a TN has as parents other
Temporal Nodes (an example of this situation is illustrated
in Figure 1), the state of the parent nodes is not initially
known. So, we cannot apply directly the second approxima-
tion. In order to solve this problem, the intervals are selected
sequentially in a top-down fashion according to the TNBN
structure. That is, we first select the intervals for the nodes
in the second level of the network (the root nodes are in-
stantaneous by definition in a TNBN (Arroyo-Figueroa and
Sucar 1999). Once these are defined, we know the values of
the parents of the nodes in the 3rd level. Then, we can find
their intervals; and so on, until the leaf nodes are reached.

4.4 Pruning

Taking the combinations and joining the intervals can be-
come computationally too expensive, the number of sets of
intervals for node is in O(q2�2) where q is the number of
configurations and � is the maximum number of clusters for
the GMM. For this reason we used two pruning techniques
for each TN to reduce the computation time.

The first pruning technique discriminates the partitions
that contain few instances. For this, we count the number
of instances in each partition, and if it is greater than a value
β = Number of instances

Number of partitions×2
the configuration is used, if

not it is discarded. A second technique is applied when the
intervals for each combination are being obtained. If the fi-
nal set of intervals contains only one interval (no temporal
information) or more than α (producing a complex network),
the set of intervals is discarded. For our experiments we used
α = 4.

4.5 Structure Learning

Now we present the whole algorithm that learns the structure
and the intervals of the TNBN. First, we perform an initial
discretization of the temporal variables, for example using
an Equal-Width discretization (EWD) or K-means cluster-
ing. With this process we obtain an initial approximation of
the intervals for all the Temporal Nodes and we can perform

a standard BN structural learning. We used the K2 algo-
rithm (Cooper and Herskovits 1992). This algorithm has as
a parameter an ordering of the nodes. For learning TNBNs
we can exploit this parameter and define an order based on
domain information. Once the network structure has been
obtained, we apply the interval learning algorithm described
in Section 4.1. Moreover, this process of alternating interval
learning and structure learning may be iterated until achiev-
ing convergence.

4.6 An Example

We will illustrate the process of obtaining the intervals for
the TN Edema of Figure 1. We can see that its parent node
(Head Injury) has two values, true and false. Thus, we sep-
arate the data of this node in two partitions, one for each
configuration of the parent node. Then for each partition we
apply the first approximation of the algorithm. We apply the
EM algorithm to get a Gaussian mixture with parameter 1, 2
and 3 as the number of clusters. That gives us six different
sets of intervals, as we show in Table 1.

Table 1: Initial sets of intervals obtained for node Edema.
There are 3 sets of intervals for each partition.

Partition Intervals

HI=true [11− 35]
[11− 27][32− 53]
[8− 21][25− 32][45− 59]

HI=false [3− 48]
[0− 19][39− 62]
[0− 14][28− 40][47− 65]

Then we combine these sets of intervals for each partition
with the other partitions. In this case, there could be 3×3 =
nine different sets of intervals, but some of these combina-
tions are eliminated.

For example, we should merge the sets [11− 35] and [3−
48], if we concatenate then we get [11−35][3−48]. With this
set we apply Algorithm 2. In this case when we sort we get
[3 − 48][11 − 35]. The next thing to do is to check whether
one interval is contained in another, this is true ([11 − 35]
in [3 − 48]), then we obtain the average interval [7 − 41].
Next take [11− 35] and [0− 19][39− 62]. If we concatenate
these intervals we get [11− 35][0− 19][39− 62]. Applying
Algorithm 2 we sort the intervals to obtain [0 − 19][11 −
35][39− 62]. Here, no interval is contained in another so we
skip the code inside the while statement, then we refine the
intervals to obtain [0 − 15][16 − 37][38 − 62]. The process
continues and we obtain the sets of intervals shown in Table
2.

This process is applied to each Temporal Node. To select
the set of intervals for each node we apply the inference tests
described in Section 4.2.

5 Evaluation on a Synthetic Case

In order to evaluate our algorithm, we considered the syn-
thetic case corresponding to the TNBN presented in Fig-
ure 1. It is a hypothetical example of the consequences

611

Table 2: Final sets of intervals obtained for node Edema.
Intervals Node Edema

[0− 15][16− 37][38− 62]
[0− 12][13− 31][32− 43][44− 65]
[7− 37][38− 53]
[15− 39][40− 59]
[0− 13][14− 23][24− 38][39− 60]

of an automobile accident. Given that we know the orig-
inal structure, parameters, and intervals, we can compare
the results of our algorithm to the reference network. The
idea is to sample the fully specified TNBN to generate
data that reflects the model and the intervals. Then, we
can use that data to reconstruct the model with the pro-
posed algorithm. For the data that represents the inter-
vals, we perform two experiments. In the first one, data
was generated by a normal distribution over the intervals
with parameters μ = Interval Start+Interval End

2 , σ =
Interval End−Interval Start

2 For the second test, the data
was generated with a uniform distribution over the intervals.
The intervals used to generate the data are the same as those
shown in Figure 1.

5.1 Experiments

In both experiments we compared the proposed algorithm
(P) and the algorithm introduced in (Friedman and Gold-
szmidt 1996) (F). As baselines we used an Equal-Width dis-
cretization (E) and K-means (K) clustering for learning the
initial intervals for the Temporal Nodes. For measuring the
quality of the structure of the TNBN with respect to the ref-
erence network, three measures were used: (i) The structural
similarity (S-S) (Wu et al. 2001), which is a score between 0
and 1 (maximum) that counts the similar edges with a refer-
ence network. (ii) The number of added edges (E +) and (iii)
the number of deleted edges (E -). The best network should
obtain score 1 in structure similarity and 0 for edges deleted
and added. For evaluating the quality of the intervals, we
used two measures: (i) the error in time (T-E) defined as
the difference between the real event and the expected mean
of the interval and (ii) the number of intervals (# I) in the
network. For evaluating the complete network the RBS was
used. The best network should obtain a low time error, a low
number of intervals, and a high inference quality (RBS). In
all the tables, C represents the number of instances used for
training.

For the first set of experiments, we used a Gaussian dis-
tribution to generate the data. In each experiment, we gener-
ated a different number of cases varying the number of ini-
tial intervals using EWD from 2-5 intervals (the results are
summarized in the upper part of Table 3, which shows the
average of 10 repetitions). It can be noticed that our algo-
rithm obtains the lowest time error and with 200 cases it ob-
tains the maximum score for structure similarity. Friedman’s
algorithm obtains the worst time error but its accuracy and
number of intervals are the best. EWD obtained low time
errors because the number of intervals is the highest. There-

Table 3: Evaluation of different algorithms (Alg) with Gaus-
sian Distribution with Equal-Width Discretization and K-
means as initialization. C is the number of cases (instances
of data) used. T-E is the time error. S-S the structural simi-
larity score. E + and E - are the edges added and deleted. #
I is the average number of intervals.

Equal-Width discretization
C Alg T-E S-S E + E - RBS # I

100 P 7.05 0.72 1.75 2 80.76 13
F 8.99 0.75 1.25 2 80.86 11
E 7.21 0.72 0.75 2.25 75.34 17.5

150 P 5.82 0.81 1.25 1.5 81.31 13.5
F 8.84 0.78 0.25 1.75 82.60 11
E 6.66 0.72 0.25 2.25 76.59 17.5

200 P 6.68 1.00 1 0 80.72 14.5
F 7.97 0.88 1 1 81.66 11
E 6.36 0.88 1.75 1 75.07 17.5

K-means
C Alg T-E S-S E + E - RBS # I

100 P 6.51 0.81 2.25 1.5 80.19 12.75
F 7.88 0.78 0.25 1.75 81.20 11
K 7.10 0.75 2.75 2 76.55 17.5

150 P 5.88 0.81 1 1.5 78.72 13.75
F 8.11 0.81 1 1.5 81.09 11
K 7.09 0.75 0.75 2 76.09 17.5

200 P 6.35 0.94 1 0 78.77 13.75
F 8.19 0.78 0.25 1.75 81.60 11
K 7.17 0.94 1.25 0.5 77.53 17.5

Table 4: Evaluation of the algorithm with Uniform Distribu-
tion with EWD and K-means as initialization.

Equal-Width discretization
C Alg T-E S-S E + E - RBS # I

100 P 7.54 0.78 1.25 1.75 79.82 14.75
F 7.94 0.81 0.75 1.5 81.40 11
E 6.86 0.75 0.75 2 75.38 17.5

150 P 6.71 0.75 0 2 80.61 13.25
F 8.01 0.75 0.75 2 81.21 11
E 5.84 0.78 0.5 1.75 74.20 17.5

200 P 5.89 1.00 1 0 81.69 12
F 7.23 0.88 0.5 1 80.99 11
E 6.42 0.97 1.25 0.25 75.73 17.5

K-means
C Alg T-E S-S E + E - RBS # I

100 P 7.04 0.78 0 1.75 80.28 16
F 7.99 0.72 1 1.5 79.89 11
K 6.96 0.69 1.5 2.5 77.05 17.5

150 P 6.03 0.78 0.25 1.75 78.58 14
F 7.69 0.81 0.5 1.75 81.62 11
K 6.76 0.75 0.25 2 76.55 17.5

200 P 6.64 0.91 1 0.75 79.45 12.25
F 7.24 0.78 1 2 82.05 11
K 7.42 0.91 1.5 0.75 77.16 17.5

612

Table 5: Average results for all the experiments

Init A T. E. S-S E + E - RBS # I T
Gaussian Distribution

E P 6.58 0.83 1.17 1.29 80.66 13.5 9.0
E F 8.61 0.78 0.75 1.80 84.28 11 10.7
E 6.90 0.77 1.28 1.83 77.91 17.5 -
K P 6.41 0.85 1.33 1.13 79.66 14 6.4
K F 7.98 0.78 0.85 1.80 84.60 11 8.7
K 6.74 0.78 1.43 1.70 75.77 17.5 -

Uniform Distribution
E P 6.76 0.88 0.71 1.00 75.77 13.5 7.2
E F 7.69 0.84 0.95 1.35 81.61 11 9.3
E 6.83 0.79 0.79 1.67 77.45 17 -
K P 6.65 0.84 0.71 1.29 79.93 14 4.8
K F 7.67 0.76 1.05 1.90 81.94 11 6.3
K 6.69 0.81 1.30 1.43 75.49 17.5 -

fore, the intervals are smaller yielding a lower time error.
In the lower part of the Table 3 we can see the results

for the same experiments but using K-means for the initial-
ization of the intervals. Again, we vary the number of initial
clusters from 2-5. We can observe that our algorithm obtains
the best results in terms of time error and structural similar-
ity. The results for 150 cases are interesting because they
show that our algorithm and Friedman’s obtained the same
structural scores. However, our algorithm obtains the best
score in time error with a lower accuracy than Friedman’s
algorithm.

For the second set of experiments, we generated data from
a Uniform distribution and applied the same tests as those
presented for Gaussian distribution. In the upper part of Ta-
ble 4 we present the results for the experiments using EWD
as initialization. Here, we can observe that as the number
of cases increases, the same happens with the scores of our
algorithm. With 200 cases, it obtains the best score for time
error, structural similarity, and accuracy. In the lower part
of Table 4, we present the results for the experiments using
K-means as initialization for the intervals. The results show
that our algorithm obtains the best time error and structural
scores. Friedman’s algorithm obtained the best RBS and the
lowest number of intervals.

5.2 Overall Results

In Table 5 we report the average results for all the exper-
iments. We also compare the algorithms in runtime (T).
Each row presents the average of the experiments varying
the number of cases in the range from 50-250, and vary-
ing the initial number of intervals from 2-5 using EWD or
K-means as initialization. We observe that the proposed al-
gorithm obtained the lowest time error and the best scores
in structural learning. The RBS and the number of intervals
were not the best but were not far from the best result. More-
over, the results show that the proposed algorithm obtained
the lowest runtimes in all cases.

6 Conclusions and Future Research

We developed a method for learning both, the structure and
the temporal intervals for a TNBN from data. The method
initially generates a set of candidate intervals for each Tem-
poral Node based on a Gaussian clustering algorithm. Then,
the best intervals are selected based on their predictive ac-
curacy. We evaluated our method with synthetic data and
compared it with (Friedman and Goldszmidt 1996). In gen-
eral, both methods obtain similar results in terms of structure
and predictive accuracy. However, the proposed method is
better in terms of time error and is also more efficient. As
future research we propose to evaluate our model with larger
synthetic cases and a real medical application.

Acknowledgments

This research was partially supported by project FONCI-
CYT 95185. The first author is supported by a grant 234507
from Conacyt.

References

Arroyo-Figueroa, G., and Sucar, L. E. 1999. A temporal
Bayesian network for diagnosis and prediction. In Proceed-
ings of the 15th UAI Conference, 13–22.
Cooper, G., and Herskovits, E. 1992. A bayesian method for
the induction of probabilistic networks from data. Machine
learning 9(4):309–347.
Dagum, P.; Galper, A.; and Horvitz, E. 1992. Dynamic
network models for forecasting. In Proceedings of the 8th
Workshop UAI, 41–48.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society 39(1):1–38.
Friedman, N., and Goldszmidt, M. 1996. Discretizing con-
tinuous attributes while learning bayesian networks. In Ma-
chine Learning -Int. Workshop 10th Conf., 157–165.
Galán, S. F.; Arroyo-Figueroa, G.; Dı́ez, F. J.; and Sucar,
L. E. 2007. Comparison of two types of event bayesian
networks: A case study. Applied Artificial Intelligence
21(3):185–209.
Lam, W., and Bacchus, F. 1994. Learning Bayesian belief
networks: An approach based on the MDL principle. Com-
putational intelligence 10(4):269–293.
Liu, W.; Song, N.; and Yao, H. 2005. Temporal functional
dependencies and temporal nodes bayesian networks. The
Computer Journal 48(1).
Neapolitan, R. 2004. Learning bayesian networks. Pearson
Prentice Hall.
Pang, B.; Zhang, D.; Li, N.; and Wang, K. 2004. Computer-
ized tongue diagnosis based on bayesian networks. Biomed-
ical Engineering, IEEE Transactions on 51(10):1803–1810.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann.
Wu, X.; Lucas, P.; Kerr, S.; and Dijkhuizen, R. 2001.
Learning bayesian-network topologies in realistic medical
domains. Medical Data Analysis 302–307.

613

