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Abstract 
In this paper we describe an evolutionary algorithm for 
assigning students to courses in a situation where each 
student specifies a set of courses in order of preference, 
each course has a limited enrollment, and the object is to 
maximize the overall student satisfaction by assigning each 
student to a course as high on his or her preference list as 
possible.  Results of using the algorithm on historical data 
are compared to the success of a human in making the 
assignments.  This work was done as part of a summer 
undergraduate research project while the second author was 
still a student.  We also report preliminary results for using 
this problem as the basis for an assignment in a course in 
Artificial Intelligence.  

Introduction   
Like many liberal arts colleges, Centre College offers a 
short, intensive term between its more traditional long 
terms.  During this time, first year students must enroll in 
specially designed First Year Seminars.  The class size is 
limited to fifteen and courses are offered across a broad 
spectrum of disciplines on a wide variety of topics.  During 
the registration process students are required to list four 
courses that they would like to take in their order of 
preference.  The registrar attempts to satisfy these requests 
as equitably as possible with the hope of granting as many 
students as possible their first or second choice.  Clearly, 
the problem does not always admit a solution.  In the 
extreme case, all students could request exactly the same 
four courses with the result that only sixty of them could 
be accommodated under the stated rules.  Fortunately, 
nothing close to this has occurred but in a year where 
nearly all classes had to be completely full, it was 
necessary to raise the limit on a few courses to insure that 
each student received one of the listed choices.  Normally, 
the assignments are made by the registrar using a variety of 
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heuristics which eventually produce good results.  While 
not initially interested in an alternate solution, the registrar 
was willing to share historical data so that we could 
empirically compare  the results of the assignments he 
made by hand with those produced by various evolutionary 
algorithms arising from our study.  The recent growth in 
the size of the first year class has increased his interest in 
these results. 

 Problem Description 
The problem at hand can be viewed as an instance of the 
Generalized Assignment Problem in which each agent in 
one set is matched to a single task in another set.  
Furthermore, each task has a limited capacity for agents 
and the goal is to maximize some objective function.  
Formally, the problem can be stated as an integer 
programming problem. 
Maximize   
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where m is the number of students, n is the number of 
courses, ijs is a measure of the preference of student j for 
course i and 
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The requirement (0.2) insures that no student will be 
assigned to more than one course.  Similarly (0.3) 
addresses the need for class sizes to be capped at 15.  
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There are many ways in which to define the preferences sij.
For example ijs  might equal 5 if class i is the first choice 
of student j and a correspondingly lower weight if it is a 
lower choice.  Alternate values assigned to the weights will 
reflect a desire to reach certain goals.  For example, one 
could significantly raise the weights for first and second 
choices and significantly penalize (with a negative weight) 
any placement which was not one of the student’s original 
choices.  In any event, attempting to maximize S will 
encourage assignments which match these preferences. 

Previous Work 
The Generalized Assignment Problem is a well studied 
domain and there are numerous ways to construct solutions 
to this problem including many which employ genetic 
algorithms.  We mention only a few of many works 
dealing with this and related problems.  Because this was 
an undergraduate research project, the existence of these 
solutions did not detract from the opportunity to develop, 
test and assess a potentially novel approach to the problem.   
 One interesting and related application of the 
Generalized Assignment Problem is found in a paper on 
the  Sailor Assignment Problem (Garrett et al. 2005).
Because the United States Navy requires that each sailor in 
the Navy change jobs every two years, there is a need to 
find a mapping between the sailors, all having their own 
particular skills and desires, and the available jobs with 
their particular requirements. This must be accomplished in 
a way that somehow maximizes the satisfaction of the 
sailors and their potential commanders while conforming 
to budgets and so on. In this case the constraints in (0.3) 
would have the right hand sides equal to one since each job 
can be taken by at most one sailor.   

(Feltl and Raidl 2004) has background information and 
bibliography on the Generalized Assignment Problem. In 
this paper the authors describe several exact and heuristic 
approaches to this problem including a hybrid genetic 
algorithm from Chu and Beasley.  

Exact methods such as integer programming are 
frequently based on some version of branch and bound.  
Often designers employ some sort of heuristic to guide the 
order in which they explore the solution space during the 
branching process.  This sort of approach is not practical 
for the problem at hand because, for example, if there were 
300 students and 21 courses, there would be 6300 variables 
and 321 constraints in addition to the requirement that the 
solutions be binary.   

We turned our attention to developing a genetic 
algorithm not only because an exact solution seemed 
infeasible but also because the genetic approach offered the 
opportunity for experimentation and creativity in the 
context of an undergraduate research project and the 

opportunity to apply a classroom topic to an actual 
problem. 

An Evolutionary Algorithm 
Evolutionary algorithms work with a population of 
potential solutions, often called chromosomes.  At each 
step of the process, members of the population are 
evaluated by a fitness function. Those chromosomes with 
the highest value of the fitness function are most likely to 
survive to the next generation and/or produce additional 
offspring by some methods which mimic the processes of 
natural selection and mutation in the natural world.  This 
process continues for many generations until at some point 
the chromosome with the maximum fitness in the current 
population is selected as an approximation to the true 
maximum. 

There are many techniques which have been used for the 
selection and mutation operators.  This paper motivates 
and describes one such set of variation operators and the 
results of the experiments that compared the values of (0.1) 
for the registrar’s assignment of students to that for various 
versions of an evolutionary algorithm. 

Representation 
Typically, a chromosome is represented by a string of 
zeros and ones.  The crossover operation which produces 
the offspring is frequently accomplished by splicing 
together a copy of an initial segment of one string with a 
terminal segment of another.  If, as is frequently the case, 
the length of the chromosomes is fixed at some value t then 
the crossover can occur by concatenating the first k bits 
from one chromosome with the last t – k bits from the other 
for some k with 0 k tk t Mutations occur by randomly 
flipping a bit.  The particular algorithm must determine 
how a solution can be mapped to such a string of bits, the 
protocol under which the operations occur, and an 
assortment of probabilities, counts, and frequencies.   

Given that there are n different classes and m students, 
initially it seemed appropriate to represent a chromosome
which is a potential solution to the problem as a vector of 
m* k bits where k = ceiling ( log2 (n + 1)).  The binary 
representation of the class to which the solution assigns 
student i would then be located in bits k*(i-1)…k*i-1.  
While this would make it easy to execute the usual 
crossover and mutation operations, it is obvious that these 
operations could regularly result in an infeasible solution.  
Even if we split the chromosomes at a multiple of k, there 
is no reason to believe the resulting chromosome would 
observe the constraint in (0.3).  Eventually, we decided on 
an alternative.  A chromosome would be represented by a 
permutation of the digits 1..m and this permutation would 
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represent the order in which the students would select a 
class.  Each student would of course select the class 
highest on his or her priority list which still had not 
reached capacity.  If it should happen that all four courses 
which the student had selected were already filled when it 
was that student’s turn to select a course, then that 
particular student would remain unassigned.   

The Operators 
Unfortunately, the typical crossover operator which takes 
two chromosomes from the population and creates a new 
chromosome for the next generation by splicing together 
parts of each will still not work. Given the selected 
representation, such an operation would almost certainly 
create a sequence which is not a permutation of 1..m and 
hence is not an admissible chromosome.  Bearing in mind 
that the purpose of generating new chromosomes by 
crossover is to produce a better candidate solution from 
two pretty good ones, we opted to forsake the two parent 
analogy. Instead, the offspring come from a single parent 
by the process of randomly selecting two integers, a and b
between 1 and m and randomly permuting the contents of 
the chromosome between index a and index b. This 
guarantees that the resulting chromosome will be a 
permutation of the numbers 1 to m and has the effect of 
changing the order in which a subset of the students make 
their selections.  Just as in the case of the two parent 
operation, this operation does not guarantee that the 
offspring will have better fitness than the parent.  It might 
be better to call this operation reproduce. 

The mutation operator randomly selects two indices i
and j between 1 and m and interchanges the contents of the 
chromosome at those two points.  Again, this operator 
preserves the requirement that each chromosome must be a 
permutation of the numbers 1 to m.  It has the effect of 
selecting two students and switching the order in which 
they select their classes.  If originally the first student was 
the ith one to make a selection and the second was the jth
one to do so, now the second student will be the ith one to 
make a choice and the first will be making a choice in the 
jth position. 

Finally, there is an improve  function.  This is an effort 
to locally repair a chromosome which results in unassigned 
students.  When student i is unassigned, the algorithm 
looks up the first choice c1 of that student, randomly selects 
a student j who was assigned to class c1 and then swaps the 
positions in the chromosome of students i and j.  Since
course c1 must have been available at the time student j
made a choice, this guarantees that student i will be 
assigned and at worst it may mean that student j is 
unassigned.  More likely, student j will simply get a lower 
priority choice which would still improve the value of the 
fitness function described below for the new chromosome. 

The Fitness Function 
The fitness function must be selected in such a way as to 
generate a solution which meets the objectives of the 
problem.  In this case, it was desirable to assign students to 
their highest choices while attempting to assign all students 
to some class and no student to a class which did not 
appear on his or her priority list.  As pointed out earlier, it 
is possible that such a solution does not exist and the 
algorithm may terminate with some students unassigned.  
In this case human intervention would be required to 
perhaps increase the limit on a few classes to make certain 
that all students could be accommodated in one of their 
desired courses.    This is much more likely to occur when 
there is very little slack in the total number of available 
course slots when compared to the number of students who 
must be assigned or when there are a small number of 
courses which are ranked highly by a large portion of 
students.   

In view of these considerations, one fitness function that 
was used awarded four points for each assignment that 
gave a student his or her  first choice, three points for a 
second choice, two points for a third and one point for a 
fourth choice.  Ten points were subtracted for every 
unassigned student.  This particular function did not 
differentiate greatly among any of the choices listed by a 
student, but placed a great penalty on unassigned students.   

An alternate fitness function which placed greater value 
on students getting one of their first two choices could 
award 8 points for every first choice, 4 for a second, 2 for a 
third choice, 1 for a fourth choice and -10 for no 
placement.  This should produce a much larger number of 
students receiving their first or second choice. This 
function is used in many of the experiments reported below 
since it matches the registrar’s desire to give students their 
first or second choice. 

Obviously, one can experiment with a wide collection of 
potential fitness functions and observe the results. Sample 
outcomes are given below. 

Generating a Solution 
A variety of experiments were performed with different 
population sizes.  However, in each case, for a population 
of size  p, the initial population was created by randomly 
generating 2*p chromosomes, sorting by their fitness 
values, and then selecting the p chromosomes with the 
highest fitness.  This starts the process with a population 
possessing above average fitness. 

To get the subsequent population, p offspring are created 
from the current population by randomly selecting 
chromosomes (with replacement) and with a probability 
proportional to their fitness using roulette wheel selection 
(Goldberg 1989) which is described below. Chromosomes 
with a higher fitness are more likely to be chosen but even 
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those with a very low fitness have a positive, though 
possibly very small, probability of being selected.   

The reproduce operation is then applied to each selected 
chromosome.  In order to insure that no good solutions are 
lost between generations, the current population is merged 
with its offspring, yielding 2*p chromosomes.  Mutation is 
applied to a fraction of the population, followed by the 
improve function and then the p chromosomes with the 
highest fitness are selected for the next generation.   

After a fixed number of generations the largest value of 
the fitness function for members of the population is 
determined.  If there are multiple chromosomes in the 
population with that fitness, one with a minimum number 
of unassigned elements is selected at random. 

Implementation 
The algorithm was implemented in Python and the 
following remarks will point out a few of the ways that we 
employed language features to increase the efficiency of 
the operations.  The population of chromosomes was 
maintained as a dictionary indexed by the fitness.  If D is 
the dictionary and f is a fitness value, then D[f] is the list of 
all chromosomes with fitness f.  Since Python offers very 
good support for dictionary operations, this organization 
facilitates the process of producing the next generation by 
selecting chromosomes for creating offspring  by their 
fitness and then keeping those in the union of the current 
population and their offspring with the greatest fitness.  

Specifically, given the set of fitness values fi for i = 1..k 
and their frequencies ni = length(D[fi ]) construct the 
intervals: [b0, b1], [b1, b2]… [bk-1, bk] where b0 = 0, b1=
n1f1,and for t > 1, bt = bt-1 + nt ft.  These intervals are 
proportional in length both to the fitness value and the 
frequency with which it appears.  Select a random number 
r in the interval [0, bk], determine the subinterval [bt-1, bt]
containing r and then randomly select a chromosome from 
D[ft].  This procedure will select a chromosome randomly 
but with a probability proportional to its fitness.   

To select the new population from the union of the 
previous generation and its offspring, the new 
chromosomes are added to the dictionary for the previous 
generation and the fitness values of the dictionary are 
sorted in decreasing order. The next generation is created 
by the following process: 

1.  Let f* be the greatest fitness in the dictionary 
2. If adding all the elements in D[f*] to the next 

generation would not exceed the desired 
population size add all of them to the next 
generation.  Otherwise,  randomly select the 
desired number of chromosomes from D[f*]
to add to the next generation and exit 

3. While the number of elements in the next 
generation is less than the desired number let 
f* be the next largest fitness value in the 
dictionary and go to step 2. 

Maintaining lists of all students assigned to each course 
makes the improve operation efficient. When student j has 
a chance to make a selection and all four choices on his or 
her priority list are full, j is added to an unassigned list.  
The improve function then processes this list as described 
above.  Similarly, when the specified number of 
generations has been computed selecting the final 
candidate chromosome merely requires identifying the 
largest key in the dictionary and processing the list of 
chromosomes with that fitness to select one with the 
smallest number of unassigned students.  This is usually a 
very short list.  Thus the ease and efficiency with which 
Python allows the programmer to make dictionaries and 
lists facilitates a speedier solution at the usual cost of extra 
space. 

Experimentation and Results 
This is actually an excellent problem for student 
experimentation.  Even when all these choices are made, 
there are still a great number of parameters which must be 
decided such as the size of the population, the frequency of 
mutation, and of course the stopping condition which in 
this case is simply a fixed number of generations.  Because 
we had six years of historical results we could also 
compare the results produced by the algorithm with those 
of the assignments the registrar made by hand. 

For all the results shown below, the population size is 
set at 200, and one percent of the population experiences a 
mutation.  The populations are processed through 1000 
generations.  We begin with a fitness function in which the 
number of first choices assigned is multiplied by 8, second 
choices by six, third choices by two and fourth choices by 
one.  Ten points are subtracted for each student who is not 
assigned to a course.  This is consistent with the desire to 
give as many first and second choices as possible. 

The first table gives the results for three runs of the data 
for 2002.  There were 291 students and 22 courses which 
could hold 330 students.  There was quite a bit of extra 
room and hence it was easier to satisfy the requests.  The 
column labeled “Registrar” gives the number of first place, 
second place, etc assignments that were made by the 
registrar when this was done by hand.  The last three 
columns give the results for three runs of the evolutionary 
algorithm. 

391



Registrar Run 1 Run 2 Run 3
First choice 209 220 221 213
Second 
choice

71 67 66 69

Third choice 2 3 4 3
Fourth 
choice

9 1 0 0

Unassigned 0 0 0 0
Table 1: Data for 2002 

               
The algorithm performed very well in these cases. Because 
everything is done at random each run gives different 
results and there can frequently be very different results for 
individual students. However, the fact that we iterate 
through 1000 generations means that the fitness of the 
solutions will be fairly close. Similar results can be seen 
for the following year when there are 286 students and 23 
courses. 

Registrar Run 1 Run 2 Run 3
First choice 182 188 190 190
Second 
choice

86 81 79 79

Third choice 18 14 14 14
Fourth 
choice

0 3 3 3

Unassigned 0 0 0 0
Table 2: Data for 2003 

Again, the algorithm performs very well when compared to 
the assignments made by the registrar.  Note that the last 
two runs of the algorithm given identical distributions as 
far as the number of first place choices, second place 
choices, etc. However, if you examine the particular 
assignment of student to course there are many differences 
because of the random selection process. 

Where we would expect the evolutionary algorithm to 
have more difficulty is the situation where the number of 
available places and the number of students is very close. 
Of course this also poses problems for hand calculation.   
The data for the year 2004 gives us an opportunity to test 
this.  In fact, there were only 18 courses offered that year 
and there were 274 students – four more than could be 
accommodated with only 15 per course.  Furthermore, 
there were several courses which were very highly ranked 
by a large fraction of the students.  In order to satisfy all 
the requests of the students, the registrar had to increase 
the limit on six courses to 16 and on one particularly 
attractive class to 17. 

The algorithm was run with the usual limits but then 
human intervention was used to individually place the 
students who were not assigned into one of their choices by 
raising the limits.  Table 3 shows the data for the registrar’s 
placement and the results of two runs of the algorithm.  
The data for the algorithm indicate the original results as 

well as the improved results after human intervention 
placed the unassigned students as highly as possible 
without violating the limits as extended by the registrar. 

Reg Run 1
Orig       Imp

Run 2
Orig         Imp

First choice 148 156 158 158 161
Second 
choice

86 73 77 71 73

Third choice 37 24 25 25 26
Fourth 
choice

3 14 14 16 16

Unassigned 0 7 0 6 0
Table 3: Data for 2004 

Again, the results are quite satisfactory except that perhaps 
there are more students that end up with their fourth choice 
when using the evolutionary algorithm.  Observe, however, 
that the totals of third and fourth choice placements are 
pretty close.  This could be influenced by changing the 
weights in the fitness function as described elsewhere. 

As a final experiment, let us change the weights in the 
fitness function so they no longer put so much emphasis on 
getting a first or second choice.  This time we will give 
weights of four, three, two, and one  for first, second, third 
and fourth choices respectively and subtract ten for every 
unassigned student to minimize the human intervention. 

For this we used the data from 2005 where there were 
294 students and 20 courses.  There was not much extra 
space but there was a little.  Under these circumstances, the 
algorithm could terminate with unassigned students but 
this only occurred in one of the three runs.  Run 1 was 
done with the usual weights that we have been using and 
runs 2 and 3 with the new weights 

Reg Run 1
Orig      Imp

Run
2

Run
3

First choice 159 187 188 186 191
Second 
choice

115 78 78 70 65

Third choice 20 17 17 25 24
Fourth 
choice

0 11 11 13 14

Unassigned 0 1 0 0 0
Table 4: Data for 2005 

This change in weights caused an approximately 30 per 
cent increase in the number of third and fourth choices and 
illustrates that one can achieve a variety of goals by 
manipulating the weights appropriately.  In this particular 
year the registrar seemed to want to avoid fourth place 
choices even though it meant fewer first place choices.  
One could come closer to that goal by adjusting the fitness 
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function to place much greater distance between the 
weights on the first three choices and that on the fourth. 

An AI Assignment 
In the past when the first author discussed genetic 
algorithms in an introductory Artificial Intelligence class, it 
was often in the context of a textbook example such as 
maximizing the value of a function.  The success of this 
project provided an alternative in a problem domain with 
which all the students were very familiar since they had 
once selected their own list of preferences for a First Year 
Seminar.   Of course, in a two week assignment, students 
could not be expected to achieve the same kind of results 
as in a summer project.  Nor could they be expected to read 
research articles or consider as many alternatives.  On the 
other hand, they could be expected to define a reasonable 
encoding, fitness function, and operations.  To facilitate 
things, they were provided with some utility functions and 
the dictionary framework for their use.  Almost all the 
teams had some initial difficulty in selecting a crossover 
operation with a reasonable chance of producing improved 
offspring.  Some began with random chromosomes without 
considering how few of them would be feasible. Having 
students submit a preliminary description at the halfway 
point was very beneficial. 

In the end, four of the five teams submitted projects on 
time.  Two teams had a crossover operation involving two 
chromosomes and two had used a single chromosome to 
create a single offspring. The programs were tested with a 
new set of data which the students had not seen in the 
development phase. Not surprisingly, there were some 
difficulties.  When the registrar had visited the class in the 
role of a client, he indicated that in addition to satisfying 
student requests, he was also interested in balancing class 
sizes between 11 and 15.  One team wrote a fitness 
function which was heavily biased toward enforcing this 
balance to the detriment of satisfying student course 
preferences.  Another weighed this so lightly that while 
over 88 per cent of the students obtained one of their top 
two choices, classes were somewhat unbalanced.  The 
other two teams opted for enforcing at least the upper 
bounds and produced assignments with about 75% of 
students in their top two choices, 95% in one of their four 
choices and the rest unassigned, leaving the registrar to 
make the final placements.  This particular issue needs 
additional discussion and experimentation.

Conclusions  
The evolutionary algorithm which we developed in our 
summer research compared very favorably with the 
assignments of students to courses as done by the registrar.  
Furthermore, it was easy and fast to use, generally 

producing an assignment of all or nearly all students to 
courses in less than eight minutes.  When there were a 
handful of unassigned students it was not very difficult to 
assign them by hand by raising the limits on a few courses.  
An additional benefit was that all placements were done at 
random, freeing the registrar from any complaints about 
unfairness or partiality.  

Given the time constraints, the corresponding 
assignment in the Artificial Intelligence class was 
reasonably successful in that four of the five teams 
produced working results and had the opportunity to 
encounter a number of issues which they would not have 
confronted otherwise.  While there may be better ways to 
solve this problem, the first author found it a good vehicle 
to engage the students and several continued to work on it 
after it was graded and discussed.  Clearly, the fitness 
function will get greater attention next time. This was a 
good problem for both the undergraduate research project 
and the class assignment. 
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