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Abstract

Bayesian Network Classifiers are popular approaches for
classification problems where instances have to be assigned to
one of several classes. However, in many domains, it is nec-
essary to assign instances to multiple classes at the same time.
This task has been normally addressed either by (i) transform-
ing the problem into a single-class scenario by defining a new
class variable with all of the possible combinations of classes
or, (ii) by building an independent classifier for each class
variable. Either way, the resulting models do not capture all
the relations and dependencies between classes and features
resulting into unprecise multidimensional classifiers. In this
paper, we introduce a two-step method for learning Multi-
dimensional Bayesian Network Classifiers (MBC) from data
based on mutual information measures. The first step of the
method learns an initial MBC structure which then, in the
second step, is refined. Our approach is simple and keeps
all the interactions and dependencies among classes and fea-
tures. The method was tested on three benchmark multidi-
mensional data-sets. Preliminary experimental results show
how our method outperforms state-of-the-art methods used
in multidimensional classification.

Introduction
Bayesian Network Classifiers have gained considerable pop-
ularity for solving classification problems where an instance,
described as a set of features, has to be assigned to one of
several possible classes. However, many complex applica-
tions can be viewed as a classification problem where in-
stances have to be assigned not only to one class, but to a set
of many different classes at the same time, e.g., text classifi-
cation, DNA’s sequences analysis, HIV’s mutations control,
etc.

In order to tackle multidimensional classification with
Bayesian networks two main approaches have been pro-
posed. The first approach transforms the multidimensional
problem into a single-class scenario by defining a new com-
pound class variable whose possible values are all of the pos-
sible combinations of values of the original classes. How-
ever, the resulting new class variable might have too many
possible values. The second approach decomposes the mul-
tidimensional classification problem into different single-
class problems by building an independent classifier for each
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class variable. However, this approach is unable to capture
the interactions between classes and features and, in general,
the most likely class of each classifier will not match the
most likely set of classes due to possible interactions among
classes.

Some other, recent approaches, instead of modifying the
multidimensional problem try to find structures that keep the
interactions between all the classes and all the features vari-
ables. However, some of these methods are computationally
expensive (Rodrı́guez and Lozano 2008), do not completely
state how to learn the structure of the multidimensional clas-
sifiers (van der Gaag and de Waal 2006) or do not keep the
interactions between classes and features (Qazi et al. 2007).

In this paper we introduce a two step method for learning
Multidimensional Bayesian Network Classifiers from data
based on the mutual information or dependency between the
classes and the features variables. This method learns, in the
first step, an initial structure of the MBC very fast, then, in
the second step, this structure is refined in order to increase
the accuracy of the classification process. Our method is
simple to compute and keeps the relations or dependencies
between classes and features. We tested our method on three
benchmark data-sets and the classification rates of our clas-
sifiers outperform recent algorithms used for multidimen-
sional classification.

This paper is organized as follows, in the next Section
we define Multidimensional Bayesian Network Classifiers.
Then we present some related work concerned with learning
Multidimensional Classifiers. Afterwards we introduce our
proposed method and present the results of the performed
experiments to finally conclude the paper and suggest future
research directions.

Multidimensional Bayesian Network

Classifiers

Before introducing Multidimensional Bayesian Network
Classifiers (MBC) (van der Gaag and de Waal 2006), we
present some Bayesian Networks notation. A Bayesian net-
work over a finite set V = X1, ..., Xn, n ≥ 1, of dis-
crete random variables is a pair B = (G,Θ), where G
is an acyclic directed graph whose vertices correspond to
the random variables of V and Θ is a set of parameters
Θx|pa(x) = p(x|pa(x)), where pa(x) is a value of the set
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of variables Pa(X), parents of the X variable in the graphi-
cal structure G. B defines a joint probability distribution PB

over V given by:

PB(x1, ..., xn) =
n∏

i=1

P (xi|pa(xi)) (1)

An MBC is a Bayesian Network of restricted topology de-
signed to solve classification problems which include multi-
ple class variables, in which instances, described by a num-
ber of features, have to be assigned to a combination of
classes.

In an MBC the graph G = (V,A) has the set V of ver-
tices partitioned into two sets VC = {C1, ..., Cd}, d ≥ 1, of
class variables and VF = {F1, ..., Fm},m ≥ 1, of feature
variables (d +m = n = |V |). G also has the set A of arcs
partitioned into three sets AC , AF and ACF such that:

• The set AC ⊆ VC × VC is composed of the arcs between
the class variables, that is, the subgraph of G induced by
VC : GC = (VC , AC).

• The set AF ⊆ VF × VF is composed of the arcs between
the feature variables, that is, the subgraph of G induced
by VF : GF = (VF , AF ).

• The set ACF ⊆ VC × VF includes the arcs from the class
variables to the feature variables such that for each Fi ∈
VF there is a Cj ∈ VC with (Cj , Fi) ∈ ACF and for each
Ci ∈ VC there is an Fj ∈ VF with (Ci, Fj) ∈ ACF .

The subgraph GC of G is called the classifier’s classes
subgraph, the subgraph GF is called the features subgraph,
and the structure that connects the classes subgraph with
the features subgraph is called the feature selector (van der
Gaag and de Waal 2006) or bridge structure (Bielza, Li, and
Larrañaga 2010) of the MBC. This bridge represents the
features that are deemed relevant for classification in view
of the variables C1, ..., Cn. Figure 1 shows an MBC with
its corresponding subgraphs and bridge structure. Different
graphical structures for the classes and features subgraphs
may produce different families of MBCs. In general, classes
and features subgraphs may be: empty, directed trees, for-
est of trees, polytrees, and general directed acyclic graphs
(DAG) (Bielza, Li, and Larrañaga 2010).

An MBC in essence serves to find a joint value assign-
ment of highest posterior probability for its set of class vari-
ables. However finding such values for all feature variables
involved is, in general, an NP-hard problem (Bielza, Li, and
Larrañaga 2010). In view of the computational complexity
involved, in (van der Gaag and de Waal 2006) the authors
showed that the practicability of multidimensional classi-
fiers is limited to models with restricted class and features
subgraphs, such as the naı̈ve, tree-augmented and polytree-
augmented classifiers. Our method focuses on learning
polytree-augmented1 Multidimensional Bayesian Network
classifiers.

1The classes and the features subgraphs are both polytrees.

Figure 1: An example of a Multidimensional Bayesian Net-
work Classifier with its corresponding classes and features
subgraphs.

Related Work

In this section we present related work concerned with learn-
ing Multidimensional Classifiers.

In (Crammer and Singer 2001) the authors developed an
approach for learning multidimensional support vector ma-
chines. They incorporate kernels with a compact set of con-
straints and decompose the problem into multiple optimiza-
tion problems of reduced size. They also described a fixed-
point algorithm for solving the reduced optimization prob-
lems. In (Rodrı́guez and Lozano 2008) the authors used
a genetic algorithm called NSGA-II (Deb et al. 2000) for
learning multidimensional polytrees. They used this genetic
algorithm for learning the class, the features and the bridge
structures independently. However, decomposing the prob-
lem or using genetic algorithms makes these methods com-
plex, computationally expensive and slow which hampers
their application to large datasets.

In (van der Gaag and de Waal 2006) the authors intro-
duced the family of Multidimensional Bayesian Networks
Classifiers (MBC) and proposed a method to learn tree-
augmented MBCs structures. They first learn the classes and
features subgraphs with Chow and Liu’s algorithm (Chow
and Liu 1968) and Chu and Liu’s algorithm (Chu and Liu
1968). The bridge structure is learnt in a greedy wrapper
way. On (de Waal and van der Gaag 2007) the authors ex-
tend their previous work for learning tree-augmented MBCs
developing a method for finding the conditions for the opti-
mal recovery of polytree structures in both subgraphs.

In (Bielza, Li, and Larrañaga 2010) the authors developed
three strategies (filter, wrapper and hybrid) for learning any
type of Bayesian network structure for the class and feature
subgraphs of the MBC. Unfortunately, these strategies can
lead, in some cases, to local maxima because of the greedy
approaches they use. They also proposed a gray code for
enumerating the joint configurations of all the class variables
in a special order, which reduces the computational costs.
Finally they presented two accuracy evaluation metrics for
MBCs, the same that will be used to evaluate and compare
our proposed method.

Our method designed to learn polytree-augmented MBCs
structures does not assume a fixed bridge structure, keeps
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all of the dependencies between classes and features and re-
duces local maxima problems. Besides, the method is easy
to compute and outperforms state-of-the-art methods. In the
next section we introduce our method for learning MBCs.

Learning Multidimensional Bayesian

Networks Classifiers

In this section we introduce our two-step method to learn
Multidimensional Bayesian Networks Classifiers (MBC)
from data. The learning problem is to find an MBC that
best fits the available data. To find this structure we have de-
veloped a method based on mutual information. The mutual
information between a pair of variables is calculated using
the following equation:

I(Xi, Xj) =
n∑

i=0

n∑

j=0

P (Xi, Xj)log(
P (Xi, Xj)

P (Xi)P (Xj)
) (2)

By using equation 2, Chow and Liu (Chow and Liu 1968)
developed an algorithm (shown in Algorithm 1) for learn-
ing maximum weight spanning trees from data. We use this
algorithm for learning the class and the feature subgraphs
independently.

Algorithm 1: Chow and Liu’s algorithm for learning
Maximum Weight Spanning Trees.

Input: V: Set of Variables
Output: G: Acyclic Undirected Tree Structure

1 Build an empty graph G with V as the set of vertices;
2 Calculate the mutual information value between all

pairs of variables (I(Vi, Vj));
3 Sort the mutual information values from the highest to

the lowest;
4 Add the arc with the highest mutual information value

to G;
5 repeat
6 Add the next arc iif no cycles are generated;
7 until All variables in V are considered;
8 Return G;

The remaining task is then to learn the bridge structure
of the MBC. To achieve this, we use the concept of mutual
information between feature and class variables. If a class-
feature pair has a “high” mutual information value, an arc
from the class to the feature (i.e., in the bridge), is added to
the MBC structure. Once this process is completed we refine
the resulting structure.

Algorithm 2 presents the first step of our method to learn
MBCs. In this first step we learn the classes and the features
subgraphs through Chow and Liu’s algorithm. Then we as-
sign direction to the arcs of each of these subgraphs by us-
ing Rebane and Pearl’s algorithm (Rebane and Pearl 1987).
Then we build the bridge. In order to do this we define a
threshold. If the mutual information between a class variable
and a feature variable is larger than this threshold, an arc
from this class to this feature is added to the bridge structure

of the MBC. The idea of this first step is to quickly develop
an initial MBC structure by avoiding accuracy or score tests
that slow the learning process. Through this first step we can
achieve a good approximation to the “best” MBC structure,
the remaining work is to refine this initial MBC structure.

Algorithm 2: First Step, learning an initial structure of
the MBC.

Input: VC and VF : Sets of classes and features
variables

Output: G: Initial MBC structure, and a set of arcs
whose mutual information value ≯ threshold

1 Learn, separately, the classes and features subgraphs
(GC and GF ) through Chow and Liu’s Algorithm;

2 Assign direction to the arcs in GC and GF with Rebane
and Pearl’s Algorithm;

3 Build a graph G = GC

⋃
GF ;

4 Calculate the mutual information between classes and
features (I(VCi

, VFj
));

5 Sort the mutual information values from the highest to
the lowest;

6 Define a threshold between the highest and lowest
mutual information values;

7 Add the arc with the highest mutual information value
to G;

8 while The mutual information value of the arc
> threshold do

9 Add the next arc iif no cycles are generated;
10 Return G and the set of arcs whose mutual information

value ≯ threshold;

The second step of our method refines the initial MBC
structure. This initial MBC structure has some of all of the
possible arcs on its bridge structure. And those arcs rep-
resent the strongest dependencies (highest mutual informa-
tion values) between classes and features. However, there
could be arcs that, although they have a low mutual infor-
mation value, contribute to improve the classification accu-
racy. That is why, in this second step of our method, shown
in Algorithm 3, we add an arc to the MBC’s bridge structure
(from the set of arcs that were not previously added in the
first step) and we test if the accuracy of this MBC is better
that the accuracy of the MBC without this arc. If the ac-
curacy of the MBC with this arc is better we keep this new
MBC structure and we go for the next arc in the same way.
If there is no improvement in the accuracy then our method
finishes returning the last MBC.

As accuracy measures for learning the MBCs structures
on Algorithm 3 we can use:
• The Mean accuracy over the d class variables (accuracy

per label):

Accd =
1

d

d∑

j=1

Accj =
1

d

d∑

j=1

1

N

N∑

i=1

δ(c′ij , cij) (3)

where N is the training set, δ(c′ij , cij) = 1 if c′ij = cij
and 0 otherwise. Note that c′ij denotes the Cj class value
outputted by the model for case i and cij is its true value.
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Algorithm 3: Second Step, refinement of the structure
of the MBC.

Input: G: Initial MBC structure, and the set of arcs
whose mutual information value ≯ threshold

Output: G: Final (refined) MBC Structure
1 Build a graph G′ = G;
2 repeat
3 G = G′;
4 Add the next arc to G′ iif no cycles are generated;
5 until Accuracy(G′) ≯ Accuracy(G);
6 Return G;

• Or the Global accuracy over the d-dimensional class vari-
able (accuracy per example):

Acc =
1

N

N∑

i=1

δ(c′i, ci) (4)

where δ(c′i, ci) = 1 if c′i = ci and 0 otherwise. Therefore,
we call for a total coincidence on all of the components
of the vector of predicted classes and the vector of real
classes.
With this two-step method we achieve a good compromise

between learning time and complexity of the models. If we
define a low threshold value in the first step of our method
we can learn a model very fast because the second step does
not have to perform many accuracy tests. But, the result-
ing model can also be very complex (with a lot arcs that do
not represent strong or relevant dependencies on the bridge
structure). On the other hand, if we define a high threshold
value in the first step of the method we are going to have
simple models where the dependencies or arcs in the bridge
structure are going to belong to strong dependencies only.
However, the second step of the method is going to spend
a lot of time refining the model searching for the remain-
ing relevant dependency relations. So, defining an optimal
threshold is not an easy task. However we experimentally
observed that a threshold that allows 30% of the arcs to be
added to the MBC structure in the first step of the method
quickly generates a good initial structure of the MBC which
is then refined in the second step of the method in relatively
short time.

Once the structure is learned through our two-step
method, the parameters of the MBCs can be estimated as
in standard Bayesian networks.

In the next section we present the experimental results.

Experiments and Results

The proposed method was tested for developing MBCs for
three benchmark data sets.

The Emotions data set includes 593 sound clips (exam-
ples) from a 30-seconds sequence after the initial 30 seconds
of a song. The 72 features extracted fall into two categories:
8 rhythmic features and 64 timbre features. Songs are cat-
egorized by 6 class variables: amazed-surprised, happy-
pleased, relaxing- calm, quiet-still, sad-lonely, and angry-
aggressive. The Scene data set has 2407 pictures, and their

semantic scenes have to be classified into 6 class binary vari-
ables: beach, sunset, foliage, field, mountain, and urban.
The 294 features correspond to spatial color moments in the
LUV space. The Yeast data set is about predicting 14 func-
tional classes of 2417 genes in the Saccharomyces Cerevisae
Yeast. Each gene is described by the concatenation of some
microarray expression data and a phylogenetic profile given
by 103 features. All class variables for the three data sets
are binary, however, feature variables are numeric; we used
a static, global, supervised and top-down discretization al-
gorithm (Cheng-Jung, Chien-I, and Wei-Pang 2008). The
datasets can be found at mulan.sourceforge.net/
datasets.html2.

We compared our method against eight different algo-
rithms to learn MBCs (Bielza, Li, and Larrañaga 2010).
From these eight algorithms, five were explicitly designed
for learning MBCs: tree-tree (van der Gaag and de Waal
2006), polytree-polytree (de Waal and van der Gaag 2007)
and pure filter, pure wrapper and hybrid (Bielza, Li, and
Larrañaga 2010). Two of the algorithms use greedy search
approaches that learn a general Bayesian network, one
guided by the K2 metric (Cooper and Herskovits 1992) (fil-
ter approach), and the other guided by a performance evalu-
ation metric, as defined in (Bielza, Li, and Larrañaga 2010)
(wrapper approach). The first one will be denoted K2 BN,
while the second one will be denoted wrapper BN. And the
last one of the eight algorithms is a multi-label lazy learning
approach named ML-KNN (Zhang and Zhou 2006), derived
from the traditional K-nearest neighbor algorithm. In this
case, K was set to 3 in the Emotions and Scene data sets, and
5 in the Yeast data set. Since it is unfeasible to compute the
mutual information of two features given all the class vari-
ables, as required in (van der Gaag and de Waal 2006), the
implementation of the polytree-polytree learning algorithm
uses the marginal mutual information of pairs of features.

For our method, named Mi-MBC, we choose (as men-
tioned before) a threshold which adds to the bridge nearly
30% of the arcs in the first part of Algorithm 2. Then in the
second part the accuracy measures described before are used
to improve the model. Our method was developed in C++.
For parameter estimation and for evaluation we have inte-
grated and used the R package (Gentleman and Ihaka 1997).

Table 1 summarizes the results using first the Mean accu-
racy measure and then the Global accuracy (from Equations
3 and 4) for each data set.

As shown in Table 1, in the case of the Emotions data set
our method did not achieve as high accuracy as the Hybrid
and tree-tree methods. The reason is mainly that the number
of instances is relatively low compared with the number of
features. So the mutual information that those examples pro-
vide is not enough for achieving higher classification rates
as the other two approaches; however, our approach is very
competitive.

For the Scene and the Yeast data sets, the performance
of our approach was significantly better than the other ap-
proaches because these data sets have more examples than
the Emotions data set. When we have more examples, we

2Last time visited: February 07, 2011.
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Table 1: Performance metrics (mean ± std. deviation) and
rank (in brackets) of the algorithms over the three data sets.
For all of the algorithms 10-fold cross validation was used.

Mean Acc. Global Acc.
Emotions
tree-tree 0.8300 ±0.0151(2) 0.3844 ±0.0398(1)

polytree-polytree 0.8209 ±0.0243(5) 0.3776 ±0.0622(3)
Pure filter 0.7548 ±0.0280(8) 0.2866 ±0.0495(7)

Pure wrapper 0.8333 ±0.0123(1) 0.3708 ±0.0435(4)
Hybrid 0.8210 ±0.0170(4) 0.3557 ±0.0435(5)
K2 BN 0.7751 ±0.0261(7) 0.2812 ±0.0799(8)

Wrapper BN 0.7985 ±0.0200(6) 0.3033 ±0.0752(6)
ML-KNN 0.6133 ±0.0169(9) 0.0254 ±0.0120(9)
Mi-MBC 0.8250 ±0.0159(3) 0.3793 ±0.0631(2)

Scene
tree-tree 0.7324 ±0.0359(8) 0.1857 ±0.0977(7)

polytree-polytree 0.7602 ±0.0663(7) 0.2643 ±0.1915(5)
Pure filter 0.7726 ±0.0700(5) 0.3067 ±0.1991(1)

Pure wrapper 0.7765 ±0.0580(3) 0.2688 ±0.1642(4)
Hybrid 0.7229 ±0.0442(9) 0.1570 ±0.1018(8)
K2 BN 0.7689 ±0.0692(6) 0.2883 ±0.1995(2)

Wrapper BN 0.7739 ±0.0492(4) 0.2277 ±0.1372(6)
ML-KNN 0.8196 ±0.0092(2) 0.0311 ±0.0147(9)
Mi-MBC 0.8457 ±0.0412(1) 0.2876 ±0.1050(3)

Yeast
tree-tree 0.7728 ±0.0071(4) 0.1953 ±0.0207(1)

polytree-polytree 0.7336 ±0.0182(8) 0.1431 ±0.0257(3)
Pure filter 0.7480 ±0.0119(6) 0.0989 ±0.0342(7)

Pure wrapper 0.7845 ±0.0131(2) 0.1410 ±0.0989(4)
Hybrid 0.7397 ±0.0114(7) 0.1200 ±0.0268(6)
K2 BN 0.7686 ±0.0112(5) 0.1299 ±0.0204(5)

Wrapper BN 0.7745 ±0.0049(3) 0.0550 ±0.0212(8)
ML-KNN 0.6364 ±0.0196(9) 0.0062 ±0.0029(9)
Mi-MBC 0.8046 ±0.0112(1) 0.1889 ±0.0442(2)

Table 2: Average Accuracy values and global ranking (in
brackets) of the algorithms over the three data sets.

Mean Acc. Global Acc. Average Acc.
tree-tree 4.6667 3.0000 3.8333(3)

polytree-polytree 6.6667 3.6667 5.1666(4)
Pure filter 6.3333 5.0000 5.6666(7)

Pure wrapper 2.0000 4.0000 3.0000(2)
Hybrid 6.6667 6.3333 6.5000(8)
K2 BN 6.0000 5.0000 5.5000(6)

Wrapper BN 4.3333 6.6667 5.5000(5)
ML-KNN 6.6667 9.0000 7.8333(9)
Mi-MBC 1.6667 2.3333 2.0000(1)

are able to obtain mutual information values that allow our
method to accurately represent the relations and dependen-
cies between variables and, as consequence, we have better
performance in the classification tasks.

Table 2 shows the average rankings of the algorithms. As
shown in this table, in general, our method outperforms the
other methods designed for multidimensional classification.

The methods that we used to compare ours were previ-

ously coded3 in Matlab and they were programmed by us-
ing parallel methods. Thus, a direct comparison in terms of
processing times of our method against the others is not pos-
sible, we can only provide a qualitative one. For a compar-
ison of the execution times between those methods please
refer to (Bielza, Li, and Larrañaga 2010). So far we can
only say that the execution time of our method ranges be-
tween the limits of the tree-tree parallel implementation but
further tests are needed in order to accurately measure and
compare the execution times. In Table 3 we present the time
that our method took to build the MBCs structures and learn
the parameters on the three benchmark data sets. The ta-
ble shows if the MBC model was learnt using the Mean or
the Global accuracy measure, the time that took every step
of our method, the time that took to learn the parameters of
the MBC (through the R package) and the total time. Our
method was tested on a computer equipped with 2 Gb of
RAM Memory and with a Pentium Dual Core processor at
1.8 Ghz.

Table 3: Time (in minutes) per type of accuracy measure and
per step, that our method took to build the MBCs structures.

Emotions
Step 1 Step 2 Param. Est. Total

Mean accuracy 13 20 18 51
Global accuracy 13 16 15 44

Scene
Mean accuracy 21 30 42 93

Global accuracy 21 23 45 89
Yeast

Mean accuracy 31 30 55 116
Global accuracy 27 26 64 117

As we can see in Table 3, in average the parameter esti-
mation step is the most expensive computationally, followed
by the second phase (step 2) of our method.

Conclusions and Future Work

In this paper we introduced a two-step method for learning
Multidimensional Bayesian Network Classifiers (MBC). In
the first step, our method learns the subgraphs for the class
and for the feature variables by using Chow and Liu’s al-
gorithm and also learns a “first” bridge structure that con-
nects these two subgraphs. In the second step, our method
refines the MBC structure, learned in the first step, by
using the mutual information values between classes and
features variables. Our method adds only those arcs be-
longing to highly dependant variables guiding the second
step and avoiding testing possible irrelevant arcs. Our
method was able to outperform state-of-the-art methods de-
signed for multidimensional classification. As future work
we would like to incorporate the possibility of deleting
previously added arcs from the bridge in order to eval-
uate the complexity and accuracy of the MBC structure;
to perform experiments on some “real-world” multidimen-
sional data-sets (e.g., the Slashdot slashdot.org or the

3Developed by (Bielza, Li, and Larrañaga 2010).
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IMDB imdb.com/interfaces#plain data-sets), and
to compare our method with some other recent approaches
for Multidimensional Classification (e.g., Classifier Chains
(Read et al. 2009)).
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