Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

The Utility of Combinatory Categorial Grammar in
Designing a Pedagogical Tool for Teaching Languages

Simon Delamarre
TELECOM Bretagne
CS 83818 F29238 Brest cedex
simon.delamarre @telecom-bretagne.eu

Abstract

This paper intends to demonstrate how Applicative and Com-
binatory Categorial Grammar (ACCG) can be drawn on to
design powerful software applications for the teaching of lan-
guages. To this end, we present some modules from our
“pictographic translator”, a software that performs syntactical
analysis of sentences in natural language directly written by
the user, and then dynamically displays series of pictograms
that illustrate the words and structure of the user’s sentences.
After a short presentation of our application and an introduc-
tion to ACCG, we will examine how this formalism enables
the building of several high-level functions in our system,
such as disambiguation, structure exhibition and grammati-
cal correction/validation. We finally open a short discussion
concerning the potential (and limits) of this architecture with
regards to multilingualism.

Introduction
A pictographic translator

According to certain studies concerning learning and reten-
tion, we usually memorize about 90% of what we do, versus
only 10% of what we read. And indeed, however forced this
explicit quantification may seem, it is a fact that any learn-
ing activity, to be efficient, has to be active. It is in this spirit
that, while the huge majority of current pedagogical soft-
ware programs mainly rely on cross-the-correct-answer/fill-
the-gap exercises, we conceived this interactive pictographic
translator. It consists of a graphic interface, in which the
user is invited to build a sentence, by typing his own words.
When the programs detects that a new word has been entered
(using a tokenizer), it computes a syntactical analysis of the
currently built sentence, and then, retrieves (by performing
a lemmatization) and displays a pictogram that represents
this word (see Figure 1). As often as it remains relevant, we
use the rule of correspondence: one word, one pictogram.
Situations in which an only pictogram for several words
would be preferable (e.g. washing machine) are treated in a
post-processing of the tokenisation step, by merging tokens
that form a wider component present in the lexicon ([wash-
ing,machine] — [washing machine]).

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

150

uuuuuuuuuuuuuuuuuu \Jo souris a la ptite sourls

©

Je souris a
—

Iy

petite souris

P |

Figure 1: The pictographic representation for “Je souris a
la petite souris” (I'm smiling at the little mouse). The pic-
tograms appear dynamically as the words are entered.

At the same time, by using several graphical effects,
such as colored borders, subtitles, transparencies, small pic-
tograms to indicate functions (plural, tenses...), the program
gives to the user direct visual control of the sentence he is
writing, enabling him to detect problems if there are any
(see figure 2). If however the user is not able to correct one
or several mistakes by himself, he may ask the program to
indicate these for him.

Thus, little by little, through this process of writing/visual
control/correction, the learner is led to build by himself
correct sentences, without needing any other exterior help,
which will bring him, beside the satisfaction of autonomy,
a better understanding of the structures and mechanisms of
language. Furthermore, in the case of pupils learning read-
ing, this ludic activity of “making pictures to appear” may
conduce them to grasp the expressive power of words.

The software program has been initially developed for the
French language, and already supplies operational linguistic
coverage. Our latest version also implements experimental
extensions to English and Spanish, with reduced vocabulary
and grammar. It should be noted that our implementation
uses some elements of the excellent Michael White’s Java
API for categorial grammars, OPEN CCG, and also Jason
Baldridge’s associated format DotCCG for grammar defini-
tion (see http://openccg.sourceforge.net/).

Fictior_Options

aime écouté le vent qui souffle dans les arbre

écouté vent qui

arbres

vent))]

Figure 2: Another example, “J’aime écouter le vent souf-
fler dans les arbres” (I like listening the wind blowing in
the trees). One can see here the errors highlighted and the
correction function. Here the user fails in writing the infini-
tive verb “écouter” (to listen) -confusion with past participle
“écouté”- and forgot the final s in the plural word “arbres”

(trees)

The ACCG formalism

The grammatical core of our software relies on the Ap-
plicative and Combinatory Categorial Grammar formalism
(Biskri and Descles 1997). We only aim here to informally
present some elements to make the understanding of the fol-
lowing sections easier, for a complete introduction to cat-
egorial grammars, the reader should refer, for example, to
(Biskri 1995) or (Baldridge 2002) (for CCG).

We follow the levelled architecture for natural language
analysis proposed in (Desclés 1990), in this paper we will
use the first two levels: the morphosyntactic level and the
predicative level. At the first level, we observe the linguistic
units concatenated in the order imposed by the syntax of the
natural language considered, whereas the predicative level
handles the logical structure hidden behind the linear order
of the former level.

Now we present how the connection between the two first
levels can be performed. As a Categorial Grammar Model,
ACCG relies on the assignation of orientated types to lin-
guistic units. The oriented types are defined by the data of:

- A set Ty of atomic types. In this paper, we use Ty =
{S, N, N*} (S : sentence, N : noun, N*: noun phrase)

- Two laws of composition / and \between types. Thus, if
X and Y are oriented type, X/Y and X\Y are also (func-
tional) orientated types. X/Y (resp. X\Y) represents an
operator that takes an argument of type Y on its right
(resp. left) side, to form an expression of type X.

These types permit the concatenated linguistic units to com-
bine, according to rules that are presented below, and to
form logical dependencies structure (according the operator-
operand scheme), that is to say, the predicative structure of
the sentence ; provided we dispose of a language manipu-
late these structures and introduce them in the rules. This
work could be done using lambda-expressions, nevertheless
we chose (in this paper as well as in our software project) to
use here Combinatory Logic instead (as advocates ACCG,
as a matter of fact). Indeed, as they allow us to avoid having

151

to handle linked variables, the combinators of Combinatory
Logic constitute entities far easier to manipulate in the con-
text of a computational implementation.

We can thus formulate some of the ACCG rules (we only
present four of them here, to see the complete rule system
the reader should refer to (Biskri and Descles 1997)). Nota-
tion : A linguistic unit with type X is designed by [X : u]

* Applications rules

> [XY ug] - [Y s ue] = (X (wqug)]

<Y rug] - [XNY s ugl — [X: (ugug)]
* Composition rules

B> [X/Y :u]-[Y/Z:us] = X/Z: (B uy usg)]
* Type-raising rules

T>: [X:u] = [Y/(Y\X): (C, 0]

These rules are completed by a system of metarules (De-
sclés and Biskri 1995), whose role is to control the trig-
gering of type-raising rules (and also rules implicated in
distributive coordination processing - not handled by our
current version). We also use the concept of decompo-
sition/structural reorganisation (again, see (Desclés and
Biskri 1995)), which permits to decompose a combinatorial
structure within the quasi-incremental strategy in order to
deal with backward modifiers.

Finally, in order to permit a direct processing of some
grammar errors like subject-verbs agreement, determiner-
noun agreement(etc.), we use lexical features associated to
the atomic types, such as case, person, number markers (for
instance). For example, in English, we could give to the ver-
bal form “has” the category :

S\N,

pers=3rd

/N*
The N, 3,4 permits to specialize the N* operand waited
by the verb “has” on its right side, restricting it to be in the
3rd person. That way, we will be able to detect that, for ex-
ample, “*You has” is an incorrect form, and also to retrieve
the correct flexion.

ACCG and incremental strategy analysis

Since the goal of such a system is to back the dynamical pro-
cess of building sentences, the functions of disambiguation,
grammatical correction must be performed as soon as possi-
ble, we cannot wait for the sentence to be entirely complete
to trigger them (e.g. we need to have a way to combine a
subject with a transitive verb before the later has consumed
its object, in order to be able for example to check subject-
verb agreement). To analyse partial sentences, we must then
fully exploit CCG’s flexibility, in particular the associativ-
ity given by the conjugated action of type-raising rules and
composition ones (see for example (Baldridge 2002) to go
further on this).

This flexibility, on one hand, is known to introduce in-
determinism, through the phenomenon of spurious ambigu-
ity (generating several analysis that lead to a same predica-
tive structure). On the other hand, we can take advantage
of it to enable an incremental parsing strategy (that is to
say, which systematically applies combinatory rules as soon

as they are available, from left to right, c.f. (McConville)
and Steedman’s psychologically motivated parser in (Steed-
man 2000)), which precisely solves the problem of spurious
ambiguity, with the trade, as we have said, of introducing
additional control mechanisms, here the ACCG metarules
and decomposition rule (Biskri 1995), (Desclés and Biskri
1995). We chose indeed to retain this later alternative, be-
cause, in addition to the arguments listed above, the incre-
mental parsing strategy fits naturally the interactive nature
of our program, the user’s typing of words and the dynamic
pictogram displaying being themselves incremental. !

The (simplified) mechanism of analysis we use is the fol-
lowing (we note ¢ the current step, by what we mean that we
are waiting for the 7-th word to be entered) :

1. We have a list that contains the possible analysis for the
part of the sentence previously analysed (we note it L;_1,
initialized with Ly = [|) L;_1 is a list of typed applica-
tive expressions : L;—1 = [[ti1 : Uil - [Ein; ¢ Ui N,]]
(where N; is the number of analysis the list contains).

2. When a new string s; identified by the tokenizer as rep-
resenting a word is entered, list all the possible “words”
(that is to say, lexicon entries, including informations such
as stem, features etc.) with their possible categorial types.
Doing so, we build a list Wy, = [[ti : w;];=1...n,] (Where
M; is the number of typed words possible for the string
Si).

3. Then, for each couple (typed analysis,typed word) (a,)
inLi_1 x Wg,,do:

{

* If a metarule can be applied to (a, z) :
Apply the metarule. Obtain : (a’, 2’)
(a,z) « (a',2")

* If a rule in the rule system can be applied to (a, z) (with
regard to the type of a and z):

Combine z with a according to this rule. This forms a
new typed expression (f(,) : U(a,2))

Store (t(q,2) : U(q,z)) in L;

}

> As the end of the step, only (a, z) that have been able
to combine have been stored into L;, the others have been
discarded.

'Note that non-incremental algorithms would nevertheless be
applicable as well, by triggering them after each word entered, with
some adaptations to avoid redundant computations between steps
(in a CYK chart, for example, we should conserve the previously
calculated cells). However, we conjecture that incremental strate-
gies can perform a better share of the algorithmic load between the
different words entered than non-incremental one. Indeed, again
with a CYK, entering the n'" word will always add in the chart a
diagonal of n new cells, inducing @ = O(n?) new span par-
titions to test, whereas there is no such a systematic dependency
between the step and the number of computations with incremental
parsing (and no spurious ambiguity). It would be, however, inter-
esting to have these two type of alternative empirically compared
in term of mean complexity.

152

In the worst case (if all possible analysis in L;_; combined
with all possible type word W, for the current step), the
size of L; could be M;N;, which means that this algorithm
has an exponential worst-case complexity. Fortunately, as a
direct consequence of the incremental analysis strategy, we
can decide an immediate discarding of analysis which could
not combine with any possible typed word (as presented in
the algorithm above), which drastically reduces the number
of analysis still in the race. As a consequence, the size of L;
remains under control, and so the number of computations
needed to perform the analysis does not overflow

One should note, however, that to be viable, this strat-
egy need a efficient metarule system, able to ensure entirely
the incremental analysis. If it’s not the case, one may have
to permit to not-totally-combined analysis to survive for a
while, for example by allowing a maximum number of not
combined elements greater than 1, of by saving the analysis
with a minimum number of not combined elements.

Let us see two steps of the algorithm for the sentence that
appears in the Figure 1.

Analysis of the sentence Je souris a la petite souris (-I'm
smiling at the little mouse)

e Step 1
WJE = [N;erszlst :je} Ll = [[N;erszlst je”
e Step 2

Wsouris - HN* : SOUTiS], [S\N;eTSZISt :

souris], [S\N,.c—o,q : SOUTIS]|

(the character string souris is ambiguous in French, it

may refer to the substantive “mouse”, or to the verb “to

smile” (present, singular, 1st or 2nd person))

= ([Npers—1st : Jel, [IN* = souris]) No metarule or rule
can be activated : the combination is discarded.

- ([N;ers:1st : jeL [S\N;erszlere : SOUTiS])
* The backward application rule (<) can be applied,
we obtain the predicative structure: ([S : souris Je])
= ([Npers—1st : J€l, [IN* : souris]) No metarule or rule
can be activated (due to the bad feature agreement
pers=1st/pers=2nd) : the combination is discarded.

Lo =[[S : souris Je]
o Step 3-5(...)

e Step 6 (the word entered is the second “souris”)

Ls =
[[S/N* : B(B(B(C.Je)(B(C,souris)a))la)petite]]
Weouris = [[N* : souris], [S\Ngers:lere : souris],
[S\N* : souris]]

pers=2nde

- ([S/N* : B(B(B(C,Je)(B(Cysouris)...], [N* :
souris)|)
* The forward application rule (>) can be applied, we
obtain (after combinator reducing) the applicative
expression: ([S : (a(la(petite souris)))souris Je])

- ([S/N* : B(B(B(C,Je)(B(Cysouris)...],
[S\Njers—1cre : SOuris]) No metarule or rule can be

activated : the combination is discarded.

- ([S/N* : B(B(B(C.Je)(B(Cysouris)...], [N* :
souris]) No metarule or rule can be activated : the
combination is discarded.

Lo = [[S : (a(la(petite souris)))souris Jel]

Wee see that these steps have permitted to discard all the hy-
pothesis of analysis which were not syntactically coherent,
that is to say, to perform a disambiguation over the charac-
ter string entry (in our example, the first character string has
been interpreted rightly as the verb for “to smile”, and the
second as the substantive for “mouse”).

Exploiting the extracted combinatorial
structure

Now that the combinatorial structure underlying the sen-
tence has been retrieved, we are able, on that basis, to per-
form advanced operations and inferences. We can list at
least five advanced functions it is able to offer, and which
would not be reachable (or with serious difficulties) with a
shallower analysis strategy :

e Efficient disambiguation mechanism.
e Accurate and powerful grammatical processing

e Validation of the syntactical structure of the entered sen-
tences

e Computation on the fly, as the words are entered

e Multilingual flexibility (see the Discussion at the end of
this paper)

We have already seen in the former paragraph how the in-
cremental analysis permits to perform disambiguation with
choosing the sequences of types that can combine, and to
discard definitively others, permitting us to reach a very rea-
sonable computing charge.

Concerning the grammatical processing, it is possible, for
simple problems such as subject-verbs agreement, to take
advantage of the feature mechanism presented in the intro-
duction of this paper. Otherwise, subtler analysis can be re-
alised on the basis of the combinatorial structure. As an il-
lustration we give a method to deal with the French discon-
tinuous negative operator ne...pas. The French negation is
two-parted : firstly the verb to be negate must (except in col-
loquial style) be preceded by the word ne, secondly it must
combine with a negative block. The difficulty came from the
fact these “negative blocks” are multi-faced. It is generally
the word “pas”, as adverb, but depending on semantic nu-
ances, other adverbs are also possible ne...jamais, ne...point,
or even other negative elements that are not adverbs : rien
(nothing), aucun+N (no +N)... that combine with the verb
in a position of object or subject.

As the analysis step with combinatory logic precisely per-
mits us to deal with the issue to know which word combine
with which other, all these rules concerning French nega-
tion can be capture efficiently on the basis of the applicative
expression built.

In the following lines, we only consider expressions in
normal form, without combinators. We call verbal ap-
plicative expression an expression with the form : W =
(Ui(...(U~n V)..))UNs1-..-Ungyn, where V is an

153

atomic expression of type verb, N the number of modifiers
applied to the verb, M the number of its arguments (M=1 :
intransitive verb, M=2 : transitive verb...). More rigorously,
we can define the type verbal_expression as follows :

type verbal_expression(

atomic_verb;

(expression verbal_expression0)
type verbal_expression

verbal_expression0;

(verbal_expression expression)

We suppose also that the negative words has defined in the
lexicon as having a “negative marker”. Then, we can define
the following functions :

is_negative(U)

| U atomic — has_negative_marker(U)

| U verbal expression — false

| U:UI U2 — is_negative(U1)V is_negative(U2)
is_correctly_negated(11)

| W verbal expression : —
—(3i € [1, N];U; = ne @ 3i € [1, M]; is_ negative(U;)))
| W — true

(using the above-mentioned notations)

Then, with these two simple functions we are able to han-
dle with accuracy the subtleties of the French negation we
described. For example, the sentence *Aucun enfant aime
les haricots verts (No child likes French beans), whose as-
sociated applicative expression is : aime (les (verts hari-
cots)) (aucun enfant), will be detected as incorrect (see
Figure 3). Indeed, has_negative_marker(aucun)=true, so
is_negative(aucun enfant)=true, so aime has a negative el-
ement in its arguments whereas it is not combined with the
adverb ne.

Aouterure aute pre

Aucun enfant aime les haricots verts

8 Q A%
=R i

Aucun

y;,

haricots

enfant -.. aime les verts

........................

5

Figure 3: Example of advanced grammatical processing:
the French negation. The sentence (*Aucun enfant aime les
haricots verts - No child likes French beans) is incorrect, one
would have to add the word “ne” before the verb to make
the negation complete (which is graphically represented by
an incomplete negation cross on the pictogramm for aimer).

Through this example, wee see that applicative expres-
sion can be a powerful way to express elegantly many gram-
mar rules, which would be nearly unreachable with a simple

analysis at the string level. In this view, it could be useful
to develop a practical human-friendly syntax (in the spirit of
DotCCG) to build external files defining such rules with the
language of predicative expressions, in order to exploit them
in natural language processing programs.

Another very useful consequence of the syntactical anal-
ysis is that we are able to determine if a sentence is syntacti-
cally valid (only by checking the type of the whole sentence
is —95), and then to “congratulate” the user when he suc-
ceeded to building a syntactically correct sentence, and in-
form him when he has succeeded. Using the same principle,
we are also able to highlight some elements of the phrase
structure, such as the noun phrase (see 1, 2, 3, where the
noun phrase “blocks” are linked by little chains, permitting
to identify them at the first view).

Results

The implementation we made of this architecture has
demonstrated its algorithmic viability, and then, reaches the
final functionalities we had targeted: right pictograms ap-
pear nearly instantaneously as the sentences are typed, the
disambiguation mechanism works well, as well as func-
tions of structure representation, error highlighting and cor-
rection. This permit to display the right pictograms cor-
responding to the user’s idea, provided they exist in the
image bank (otherwise our program simply substitute the
character string to the missing pictogram, still with the cat-
egory color if the word is in the lexicon). An interest-
ing possible future work would be to use -carefully- syn-
onymic relations to extend the coverage of word-pictogram
association. The French version (that counts approximately
2000 word stems) is ready to be tested in schools. We
are currently in a pre-test phase in collaboration with pri-
mary school teachers, in order to determine what correction
and new functionalities should be added to make easier and
more fruitful the first tests in real conditions with pupils.
Note also that this work was integrated in the PALLICOM
project (http://recherche.telecom-bretagne.
eu/palliacom/), which aims to support disabled per-
sons without speak by building a pictographic communica-
tor (Abraham 2005), and deals with the reverse operation,
i.e. building text from pictograms. Future works may consist
in combining, on the ACCG basis, the two directions (text
to/from pictograms) in a same architecture, which could be
very fruitful for both applications (palliative communication
and language teaching).

Discussion: how to deal with multilingualism?

At this point raises a very interesting question: if at first
place this program has been designed to be a tool for the
teaching of French, to what extent the principles it relies on
could be extended to other languages? Which modules of
the architecture can be reused without any adaptation in all
(or at least in many) languages, and which ones should in-
duce a specific processing from one to another?

In this view, one of the most challenging issues may seem
to be the adaptation of the syntactic processing, in particular
the disambiguation mechanism and the building of underly-

154

ing applicative expressions... Fortunately, here can interfere
another asset of Categorial Grammars : the suppleness in-
duced by the fact they rely on only a few very general con-
cepts (a small set of atomic type, and the two laws of com-
position) make them able to pretend to a certain universality.

Let us take an example with adjectives. The semantic
concept of adjective is quite universal, however many dif-
ferences raise between languages concerning the associated
syntactic process: if in English the adjective always precede
the noun it qualifies (fact expressed in Categorial Grammars
by giving to the adjective the type N/N), in other languages,
such as many Romance languages, it can also follow the
noun (adding the possible category N\ N), whereas in Chi-
nese adjectives can have a certain verbal value, as they can
combine with a noun to form a correct sentence (which is
expressed by adding S\ N™* to its list of categorial types).

Thus, we see that categorical types, unlike classical cate-
gories, offer a general language that permits to define with
accuracy (and conciseness) the syntactic structure of any
language, on the basis of the operator-operand scheme and
some elemental types (noun-N, sentence-S), that are as-
sumed to be universal. In the case of our program, this
means that one would only need to supply a lexicon with
associated categorial categories to be able to reuse all the
syntactical and combinatorial processing (including the dis-
ambiguation mechanism) from one language to another. See
the examples with English and Spanish in figures 4, 5.

nnnnnnnnnnnnnnnnn She have several grey mouse Supor doriere phose

grey

have several mice

T

Figure 4: Reusing of the grammatical correction mechanism
(by only supplying a different lexicon to the program, de-
fined in a DotCGG file), with English. The user typed the
sentence *She have several grey mouse (bad subject-verb
agreement, and plural forgotten for mouse).

This, however, only concerns the fundamental concepts
the syntactical analysis is based on. But the architecture
we propose for our pictographic translator introduce sev-
eral other steps, which may need to introduce language-
dependant rules, or even algorithms. In particular, the sys-
tem of metarules, essential to make possible the incremen-
tal analysis while conserving a reasonable computational
charge, is not a language invariant, which means that one
would need for each language to define which metarules
are needed (and which are not), and to check the consis-
tency of the set chosen (which may be complex). Never-
theless, one should keep in mind that the number metarules
is typically quite reduced ((Desclés and Biskri 1995) pro-

Supr. doridre phrase

llama

Dl ama tama - snp]

oma Xt (La amal)

Figure 5: Disambiguation at works, with Spanish. The user
began to enter the sentence La llama llama... (the llama
calls...), and we see that the program has already performed
the desambiguation between llama (llama), and llama the
third-person form of the verb /llamar, to call

pose ten metarules for French), and that some metarules
are commons to many languages (for example, the fact to
type-raise a nominal phrase that precedes a transitive verb,
in languages in which these terms are defined). More critical
may be the step of the tokenizer, for which there is, at first
glance, no other way than to have an specific algorithm for
each language, and separating a string entry into pertinent
morphemes in view to represent them with pictograms can
indeed be a quite tricky issue (for instance in languages like
German).

Another decisive question is the principle of the associa-
tion word-pictogram itself. Of course, to begin, one has to
define a mapping word—pictogram for each language. But
the real difficulty lies above all in the possibility to reuse (or
not) some sets of pictograms from one language to another.

It seems rather easy for certain class of words, such as
nouns (despite possible cultural point of view towards aes-
theticism, we can assume that a nice pictogram of a lion
will be as acceptable as a lion in any linguistic context), be-
sides nothing prevents the user from adding its own nicer
pictograms to the base. But as any language does per-
form a particular partition of the reality and have its own
grammatical system, for more conceptual and grammatical
pictograms (such as prepositions, articles, tenses...) reuse
might be somewhat more delicate, and the user may have
no idea (nor any will) for making or finding more adapted
ones by himself. So, we should supply these grammatical
pictograms to him, which implies, for each language, a re-
flection and a work with graphic designers and linguists, to
design pertinent pictograms. Nevertheless, one should note
that pictogram should not be considered as an “interlingua”,
but only as supports, clues that offer to the user a direct vi-
sual control og the syntactic and semantic validity of its sen-
tence, and also give him mnemonic keys to memorize new
words. Thus, when it appears impossible to give through a
pictogram a clear and intuitive understanding of a too ab-
stract concept or grammatical word, it does not matter so
much, firstly because the usefulness of the tool would not
be undermined by a word without pictogram in a given sen-
tence, secondly because it always remains possible to give a

155

more indirect or symbolic graphical representation of diffi-
cult words, which would still assume a mere (but undeniably
very useful anyway) mnemonic role.

Conclusion

The context of language teaching is an interesting field of
application for Combinatory Categorial Grammar formalism
for several reasons. On the one hand, we need not cover the
whole language, but only the part one want to teach through
the program. We can thereby assume we are in a specific
context (by discarding in our lexicon the words we judge ir-
relevant to an introduction to one particular language), mak-
ing the use of statistical methods unnecessary, at least at the
first levels. To the other hand, for obvious pedagogical rea-
sons, this part of the language chosen must be handled with
linguistic exactness. This fully justifies the usefulness of
Categorial Grammar formalisms, and in particular ACCG,
for concrete application in the field of language teaching:
their sharpness permits to develop several advanced linguis-
tic functions and, in our case, to reach an innovative interac-
tivity with the user, while the particular linguistic area that
we are limited to by the context of teaching language learn-
ers ensures its implementation will remain computationally
viable.

Acknowledgement: this work has been supported by
French National Research Agency (ANR) through TecSan
program (project/ /PALLIACOM No. ANR-08-TECS-014).

References

Abraham, M. 2005. Dans le contexte des technologies de
Uinformation et de la communication : une écriture pic-
tographique fondée sur des principes sémantiques. Ph.D.
Dissertation, Institut Télécom-Télécom Bretagne, Univer-
sité Paris Sorbonne Paris IV.

Baldridge, J. 2002. Lexically specified derivational control
in Combinatory Categorial Grammar.

Biskri, 1., and Descles, J. 1997. Applicative and Combi-
natory Categorial Grammar (from syntax to functional se-
mantics). Recent Advances in Natural Language Processing
(selected Papers of RANLP 95) 71-84.

Biskri, I. 1995. La Grammaire categorielle combinatoire
applicative dans le cadre de la grammaire applicative et
cognitive. Ph.D. Dissertation, These de Doctorat, EHESS,
Paris.

Desclés, J., and Biskri, I. 1995. Logique combinatoire et lin-
guistique: grammaire categorielle combinatoire applicative.
Mathematiques Informatique et Sciences Humaines 39-68.
Desclés, J. 1990. Langages applicatifs, langues naturelles et
cognition.

McConville, M. Incremental natural language understand-
ing with combinatory categorial grammar.

Steedman, M. 2000. The syntactic process, volume 131.
MIT Press.

	FLAIRS24
	Contents
	Index
	Help
	Terms
	AAAI
	FLAIRS Website

