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Abstract
Since the reinvigoration of emotions research, many compu-
tational models of emotion have been developed. None of
these models, however, fully address the integration of emo-
tion generation and emotional effect in the context of cog-
nitive processes. This paper seeks to unify various models
of computational emotions while fully integrating with work
done in cognitive architectures. We propose a perspective on
how this integration would occur and EmoCog, a cognitive
architecture with mechanisms for emotion generation and ef-
fects.

Introduction
Research on the interaction between emotion and cogni-
tion has become particularly active in the last twenty-five
years. Notably, the work by Bechara and Damasio (Bechara,
Damasio, and Damasio 2000) showed the necessity of emo-
tion for decision making: loss of emotion likely leads to in-
decision or disadvantageous life decisions. This result chal-
lenged and largely overthrew the classical view that emo-
tions could only cloud rationality, though that effect has also
been documented (Gmytrasiewicz and Lisetti 2000).

Also motivating research on emotion is the characteriza-
tion of emotion as an interrupt alarm signal to cognition
(Simon 1967; Bower 1992). The signal is particularly re-
sponsible for heightening the importance of concepts asso-
ciated with the emotional episode, and for refocusing atten-
tion (Ohman, Flykt, and Esteves 2001; Bower 1992) (caus-
ing distraction from a non-emotionally relevant task at hand
when an emotional episode occurs). Damasio also asserted
that emotion facilitates special recall of concepts when high
emotional arousal occurs (Damasio 1994).

We believe that seemingly disparate emotional theories
and experimental results can be integrated smoothly into a
single computational model of human cognition. As part
of the rise of emotion research in the AI and cognitive sci-
ence communities, researchers have created several compu-
tational models of cognition and emotion, based on psycho-
logical theories and experimentation. A typical implementa-
tion of emotion generation is bound to a single theory, which
usually conflicts with other theories on which factors gener-
ate emotion and how. Computational models of emotional

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

effects tend to focus on a single effect of emotion on cogni-
tion or behavior. These research practices have led to incom-
plete, competing models which leave aside the question of a
complete integration of emotion and cognition. We set forth
proposals for a deeper integration than previous cognitive-
emotional architectures, and present the design of a cogni-
tive architecture, EmoCog, which embodies these ideas.

Background
Our approach is fundamentally built on theoretical and ex-
perimental work in psychology, cognitive systems, and neu-
roscience. For purposes of modeling emotion generation,
we have particularly studied appraisal theories, which are
the dominant basis for that type of computational model.
Appraisal theory generally argues that people are constantly
evaluating their environment, and that evaluations result in
emotions such as fear or anger. Traditional game playing
programs which evaluate their environment and/or self are
not emotional, since they do not produce the necessary ap-
praisal data for emotion and affect. There are many dif-
ferent appraisal theories, notably those of OCC (Ortony,
Clore, and Collins 1988), Frijda (Frijda 1987), Smith and
Lazarus (Smith and Lazarus 1990), and Scherer (Scherer
2001). Each theory differs in its appraisal variables and the
manner in which appraisals are generated (e.g. simultane-
ously vs. specific order).

Several theories inform our work on emotional cognitive
effects. The Somatic Marker Theory predicts that emo-
tionally enhanced memory is useful for decision-making,
as shown in the Iowa Gambling Task (Bechara, Dama-
sio, and Damasio 2000). According to similar experi-
ments, “gut feelings” during emotionally stressful moments
are a heuristic to making a decision quickly, bypassing
cognitive evaluation (Slovic et al. 2007; Finucane et al.
2000). The related mood congruence theory (Bower 1983;
1992) hypothesizes that facts or concepts learned during a
positive or negative mood are thereafter easier to remem-
ber when in a similar mood. Conversely, the Yerkes-Dodson
law (Yerkes and Dodson 1908) predicted that high levels of
emotional arousal creates distraction from non-emotionally
relevant tasks at hand (Kaufman 1999). The cue utilization
theory (Easterbrook 1959) elaborates this effect: under high
levels of arousal, environmental or internal cues not central
to the arousing agent or situation will be increasingly ig-
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nored.
Simon’s emotion-as-interrupt theory (Simon 1967) high-

lights autonomic arousal as a factor of emotion. Many of
the widely cited emotion generation theories use arousal as
a factor and can be applied to our model. Emotion gen-
eration theories usually also incorporate valence (degree
of pleasantness or unpleasantness), which we can use to
model further emotional effects on cognition, such as mood-
dependent retrieval.

We also draw from a long tradition of work in computa-
tional cognitive architectures. Such systems usually try to
address cognition as a whole. Our work has been most di-
rectly influenced by ACT-R (Anderson et al. 2004), CLAR-
ION (Sun 2006), PRS (Ingrand, Georgeff, and Rao 1992),
and Soar (Laird 2008). See (Langley, Laird, and Rogers
2009) for discussion on this topic.

Related Work
Integration of emotions into cognitive architecture can be
broken down into two separate parts:

1. Emotion generation - how cognitive processes play in the
generation and decay of emotions

2. Emotional effects - how emotional signals, once gener-
ated, affect cognitive processes such as learning or plan-
ning

Some researchers have theoretically integrated emotion and
cognition (Schorr 2001; Bower 1992) but leave out many
details about the processes and the data that underlie them.
Several computational models have been developed in at-
tempt to flesh out some of these details.

The prominent systems that address emotion generation
in a cognitive architecture include Soar-Emote (Marinier,
Laird, and Lewis 2009), EMA (Marsella and Gratch 2009),
and WASABI (Becker-Asano and Wachsmuth 2009). The
Soar-Emote work discusses how appraisal would occur in
Soar, using Newell’s theory of cognitive control. It is bound
to a number of theoretical assumptions that stem from a
single theory of emotion. EMA addresses the process of
appraisal over a previously generated plan. Neither Soar-
Emote nor EMA address how various cognitive processes
would influence appraisal. WASABI is closest to our work
on emotion generation. It presents primary and secondary
emotions, where secondary emotions depend on past expe-
riences and learned expectations and map to three discrete
emotions (hope, fear, relief). The scope of this work lacks
interaction with most cognitive processes and is limited to
explaining few emotions.

Prominent systems that address effects of emotion on cog-
nition include Soar-Emote, EMA, ACT-R (Cochran, Lee,
and Chown 2006; Fum and Stocco 2004), and MAMID.
Soar-Emote has work limited to how emotion may be in-
put to reinforcement learning (Marinier and Laird 2008).
EMA models generation of coping strategies following an
emotional episode (e.g. change own beliefs). What are still
missing are mechanisms for how the cognitive processes can
be affected. Cochran’s work in is limited to how emotional
arousal may affect memory and Fum’s work is similarly lim-
ited to how emotional memory would affect recall and sub-

sequently decision making. MAMID’s emotional effects on
cognition are limited to altering the speed and parameters of
a prescribed perception-action cognitive cycle. No previous
computational model has attempted to integrate all of this
work and other emotional effects on the function of cogni-
tive processes in a single cognitive architecture or under a
single theoretical perspective.

Overview
The remainder of this paper presents our propositions. This
can be broken down into three sections:

1. EmoCog Architecture - modules, interactions, and data
structures required

2. Mechanisms - processes that operate within EmoCog in
context of emotion generation and cognitive effects

3. Discussion and Examples - rational and alternate perspec-
tives on EmoCog’s design, and some examples to illus-
trate ability to model observed phenomenon

We finish by outlining our intended future work.

Approach
The primary theoretical proposals for our computational
model of emotion and cognition require certain program-
matical groundwork to implement in a cognitive architec-
ture. We outline the key design decisions of EmoCog, but
leave detailed discussion of implementation to a future pa-
per. The novel features of EmoCog are the interactions be-
tween emotion and “rational” cognitive processes. In this
particular version of our proposed architecture, we focus on
emotion generation and emotional effect on memory, atten-
tion, and planning.

Architecture
The architecture diagram is shown in figure 1. At a high
level, the architecture bears much resemblance to existing
cognitive architectures such as Soar, CLARION, EPIC, and
ACT-R. The potential cognitive modules are not limited to
those shown.

EmoCog’s short-term memory is based on ideas outlined
by Bower in his associative network theory of emotions
(Bower 1981), and the spreading activation theory of mem-
ory by Anderson (Anderson 1983), similar to that which
has been implemented in ACT-R (Anderson et al. 2004).
EmoCog’s model of memory (both long-term and short-
term) is a graph made up of generic nodes and links, and
will function as an associative and semantic network.

There are several types of links between nodes, each with
a label, a value, start node, end node, and optional direc-
tion. All nodes that are connected have an association link,
which carries an association strength value. Associative link
creation, reinforcement, and decay are all managed by the
association management module (see below). In addition to
associative links, there can be semantic links between nodes
(e.g., causality), which can also carry values. These seman-
tic links are maintained by cognitive processes (e.g. causal
inference placing a causal link).
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Figure 1: EmoCog cognitive architecture

Each node can represent, but is not necessarily limited
to, an episode, object, deadline, utility, concept, plan step,
or procedure. The following node features are used by the
appraisal system:

1. Current arousal (range 0 to 1): emotional arousal at cur-
rent time

2. Remembered arousal (range 0 to 1): average arousal
over time

3. Current valence (range -1 to 1): degree of like/dislike

4. Remembered valence (range -1 to 1): average valence
over time

Other node features, such as recency of recall and how many
times the node has been brought into working memory be-
fore, are not used by appraisal.

The current arousal and valence values are generated by
the appraisal module. That process is presented in the fol-
lowing section. Remembered arousal and valence are aver-
ages of the current arousal and valence over time, which can
span many episodes of the agent’s experience. The remem-
bered arousal feature allows modeling the recall facility of
nodes associated with strong emotions (Damasio 1994). The
inclusion of remembered valence allows modeling mood-
state dependent retrieval (Bower 1992).

Mechanisms
The mechanism set of EmoCog may be broken down
into three key process groups: directly controlled cogni-
tive processes, automatic cognitive processes, and meta-
management. Figure 1 identifies the cognitive modules we
propose to be directly controlled through meta-management.
All other processes are assumed to be automatic and run in
parallel.

For purposes of this paper, the details of the majority of
these modules are abstracted, as we defer discussion of these
to other papers. The sensory and encoding module handles
the addition of new nodes into short-term memory from per-
ception. Action regulation can be seen as the cognitive ar-
chitecture’s interface (mainly output) to the body.

The attention module is responsible for selecting an as-
sociated cluster of nodes for cognitive elaboration. Se-
lection determines which node cluster to use in cogni-
tive elaboration by finding a single node with the greatest
weighted sum of current arousal, associated utility, and as-
sociated urgency. All nodes directly and indirectly associ-
ated with the core node are also selected, using a breadth
first search until a threshold is met to form the cluster. The
shifting of attention via emotional processes (Simon 1967;
Bower 1992) has been marginally addressed in architectures
such as CogAff (Sloman 2001). Meta-management is able
to exercise limited executive control over attention by setting
the weight of each of these parameters.

The association maintenance module performs spreading
activation to create association links, and to reinforce current
associations in working memory. With time and neglect, as-
sociations between nodes decay in long term memory. For
example, when an object is perceived, a node is created for
the instance of object perceived. If the object is in long term
memory, an association must be made to the symbol repre-
senting that object in long term memory. If the object is pre-
viously unknown, associations can be made through various
methods (e.g. matching by analogy or temporal relation).

The appraisal module adjusts the current arousal and va-
lence values of nodes in short-term memory. When a node
enters short-term memory, association maintenance occurs,
and then the node is subjected to immediate first level ap-
praisal. This appraisal is based on remembered arousal
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and valence and innate feeling (e.g. evolutionary dislike of
predator or a negative utility node) if remembered arousal
and valence is unavailable. The innate feeling is typically
grounded in the body (e.g. pain is bad, and intensity of pain
dictates arousal).

The node will be subject to reappraisal for as long as it re-
mains in short-term memory. This may be best characterized
as the influence of associated nodes on how an agent feels
about the focal node. A graphical walk takes place on as-
sociated nodes, propagating the current arousal and valence
values (these values are scaled down based on association
strength). The traversal is terminated, if not earlier, when
all nodes in short-term memory have contributed. Four val-
ues are produced by this process: sum of arousal of negative
valence associations, sum of arousal of positive valence as-
sociations, average negative valence, and average positive
valence. The valence with a higher summed arousal will
dominate and inhibit opposing valence. The appraisal mod-
ule then incorporates the average arousal and valence into
the node’s current arousal and valence. When a new node
enters a cluster and is appraised using first level appraisal,
it will similarly influence neighboring nodes in an outward
fashion.

Overall mood of the agent will also be maintained by the
appraisal process. The current intention is to compute mood
as an average of all current arousal and valence of nodes
across working memory. A single node’s appraisal can still
influence our mood over a long period of time, given that
the node remains in working memory. This needs elabora-
tion, however, as mood is not only an overall emotional state
based on working memory, but may persist, decay, or change
independent of the changing emotionally charged nodes in
working memory.

Physiological signals will relate the needs of the body to
the cognitive architecture. In the human body, these sig-
nals might be of hunger, thirst, or fatigue. The physiologi-
cal modula interprets a body signal and maintains a node in
short term memory as well as associated urgency and utility.
The strength of the signal is directly translated to an inter-
pretation of urgency, while utility is innate.

The meta-management module is where metacognition
and cognitive control will take place. The vital components
of this module are the metacognitive rules, decision cycle,
and list of directly invoked cognitive processes. In practice,
the metacognitive rules and the rules describing cognitive
processes are represented and applied within the same rea-
soning platform. Actions, in addition to existing as nodes
in the associative memory, are also reasoned about and de-
composed within the same platform. This approach gives
EmoCog an unprecedented ability to represent interactions
between emotional and physiological processes and cogni-
tive processes such as planning and inference.

The decision cycle is the driving force of the meta-
management. It typically progresses as follows:

1. Perception - Short term memory is updated with informa-
tion from perception.

2. Attention - Metacognitive rules determine weights of at-
tention parameters. Attention module is invoked.

3. Elaboration - The node(s) which gain attentional focus are
given limited cognitive processing. Rules of the metacog-
nitive module choose which cognitive process runs1.

4. Decision evaluation - Metacognitive rules determine if
enough elaboration has been performed.

5. Action selection - If elaboration has produced a set of
candidate actions, one is selected based on metacognitive
rules that weigh utility and emotional bias.

6. Action execution - If there is a selected action, it is initi-
ated. The decision cycle is then repeated. Note that sub-
sequent decisions, or exogenous events, may interrupt the
execution of the action.
During the elaboration phase, individual cognitive pro-

cesses are invoked through metacognition, although they
share the same rule space. All cognitive processes execute
in an anytime fashion, with a limited amount of available
computation before the elaboration process repeats, possi-
bly switching attention. Cognitive processes are only able to
use the cluster of nodes under attention focus.

Discussion and Examples
We view EmoCog as an embodiment of principles needed
for full integration of emotion and cognitive architecture and
it will be particularly apt for modeling affective behavior as
described in psychology and neuroscience literature.

One particular phenomenon we address is that of emo-
tions both as interference and heuristic. It was observed
that emotional signals can disrupt normal cognitive function,
particularly when not relevant to the processing at hand.

For example, an agent is assigned a cognitive task to re-
call and output a list of words in order from long-term mem-
ory, under a deadline. Attention is focused on the first word
and the node in associative memory representing this word.
The metamanagement invokes the recall process to find the
most strongly associated node. After some iteration, several
nodes are recalled into short-term memory via this cycle.
At some point, the word “tiger” is retrieved and following
the next recall cycle, the most strongly associated node of
a traumatic “tiger attack” experience is recalled. That node
has high activation strength due to high remembered arousal
and extreme negative valence. When the “tiger attack” node
is brought into working memory, an appraisal based on the
remembered arousal and valence is assigned to the node’s
current arousal and valence. This causes the attention focus
to be drawn away from the task to dwell on the tiger attack.
Meanwhile, other nodes which do not hold attention focus
have their arousal levels decay, allowing the dominance of
the aroused thought.

Metamanagement, referencing the agent’s goals, attempts
to refocus attention to the task by raising the weight of util-
ity. The emotional episode, however, is so strong, that the
thought of a tiger attack continues to hold the agent’s atten-
tion. The attempt to return attention to the task succeeds
only when the urgency of the task also increases, due to im-
pending deadline. These rules in metamanagement are used

1Processes like learning are automatic and are not among those
selected
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to reason over the various cognitive tasks. Soar’s metacog-
nition is similar in this regard.

Our model of metamanagement stresses the importance
of metacognition when our emotions can lead us astray. A
person could have been taught to ignore emotionally com-
pelling issues to focus on his work, so he may try to do so,
but emotions are very difficult to fully ignore. Sufficient
emotional arousal will wrestle cognitive attention away from
a rational train of thought. “People who are more rational
don’t perceive emotion less, they just regulate it better” (De
Martino et al. 2006).

If a person focuses on a certain task, usually irrelevant
emotions fade, but it is not necessary that he has completely
forgotten about the invoking fact, it’s that it has been tuned
out. Neuron signal strength typically decays over time, so
under the impression that emotional signals occur in the
human brain as simple neurological pulses, we model cur-
rent arousal of unattended nodes to decay similarly, allowing
concentration on a task. That is, unless something particu-
larly compelling draws attention away. There are also well
studied mechanisms of signal inhibition and winner take all
from neuroscience literature, which we leverage by having
the appraisal process inhibit and suppress nodes excluded
from the attention cluster.

When relevant to a task, emotion can serve as a heuris-
tic for various types of cognitive processes. Emotion acting
on the recall process can model the emotionally-enhanced
recall demonstrated in the Iowa Gambling Task, and also
model Bower’s mood-congruent retrieval effect. For in-
stance, an agent wins a lottery by picking the number 7.
The agent creates an association link between a node con-
taining the number 7 and a node containing the experience
of winning. The appraisal process confers higher arousal
and positive valence to the number 7 via its association with
winning. When the prospect of picking a number to win an-
other lottery becomes the agent’s goal, 7 is more likely to
be recalled than other numbers, as it is positively associated
with winning (“lucky 7!”). The agent’s mood will also influ-
ence the choice. An agent in a positive-valence mood will
be more likely to recall 7, as that number has the highest
valence among the choices in long-term memory.

Since all cognitive processes work with the associative
network and emotional data is embedded within all the
nodes, any process can use emotion data to model emotional
affect. For example, arousal and congruence may influence
the action and goal choices an agent makes when it con-
structs a plan, and also the fidelity with which it executes a
plan. The agent may omit or curtail steps whose actions or
objects have lower arousal, even though they are logically
necessary to the plan.

EmoCog is designed to be flexible, so that further dimen-
sions and alternate views of emotion can be incorporated
into both the associative network and mechanisms. For ex-
ample, different appraisal theories can be modeled for emo-
tion generation, as many postulate some form of arousal and
valence. Other appraisal variables such as surprise can be
viewed as a combination of our current appraisal and vio-
lation of expectation (generated by planner or expectation
process), or the appraisal variable “causal agent” as causal

inference followed by association and appraisal.
To illustrate this, consider an agent looking at a table with

several objects on it. You may ask the agent how it feels
about each object on the table, and it may answer very dif-
ferently for each object, and why, by following the associ-
ations in working memory with each object. The emotions
experienced may also depend on the co-existence of objects
(e.g. a kitchen knife alone vs. a kitchen knife next to a pud-
dle of blood). The only system with a similar capability is
Soar-Emote, but its agent would only feel one momentary
emotion for each object individually as it perceives it, and is
limited on expressiveness in introspection.

Finally, much of our initial design subsumes previous
work in computational emotion with some modification.
Soar-Emote’s appraisal in PEACTIDM can be seen as ap-
praisal during our decision cycle. EMA’s appraisal over a
plan can be seen as having a series of plan steps associated in
some cluster. WASABI’s primary and secondary appraisals
also have equivalents in EmoCog, but the proposed system
of secondary appraisal in EmoCog is more flexible, as out-
lined above.

Conclusion and Future Work
The core proposals which allow deep integration of emo-
tions in a cognitive architecture are in associative network
memory, cognitive attention, and appraisal following cogni-
tion. The associative network allows for concepts to influ-
ence each other emotionally, as well as hold emotional in-
formation for general consumption by cognitive processes,
allowing effects on these processes and further emotion gen-
eration. The cognitive attention model allows for controlled
elaboration and emotional rise and decay. And finally, the
ideas of how appraisal and association management follow
cognition in the associative network, really allows the cog-
nition to influence emotional generation.

A majority of these ideas are not novel, but we believe
the perspective on their integration has great potential. It
provides a general framework to reconcile and unify exist-
ing computational models. The framework should also have
greater explanatory power for emotion-related phenomenon
and provide a test bed for understanding the role of emotions
in a fully cognitive being.

The scope of this project is broad, encompassing aspects
of cognitive architecture, emotion generation, and emotional
effect. We have started to implement EmoCog, and are
working to complete an initial version. After this we plan to
incorporate lessons learned from its deployment in a number
of settings, including behavioral simulations and computer
games.

We also intend to elaborate on much of the underlying
groundwork we have presented here in subsequent publica-
tions, including the topics of attention, physiological mech-
anisms, learning, semantic/associative networks, metacog-
nition, and knowledge representation and the relevant algo-
rithms, equations, and data structures.

There are also plans to demonstrate various well stud-
ied emotion-related behavioral phenomena. As we have
argued here, we will be able to reproduce human behav-
ior with greater fidelity considering both when emotions
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can aid us in decision making and when emotions can lead
us astray. Some of the more beneficial effects include the
emotion-enhanced judgment demonstrated in the Iowa Gam-
bling Task, and the affect heuristic used in resource-bounded
decision making. Examples of negative effects are short-
sighted exhilaration over a stock bubble, or extreme emo-
tional trauma states such as PTSD.
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