

Learning a Tutorial Dialogue Policy for Delayed Feedback

Kristy Elizabeth Boyer, Robert Phillips*, Eun Young Ha, Michael D. Wallis*,

Mladen A. Vouk, and James C. Lester

Department of Computer Science, North Carolina State University
*Dual affiliation with Applied Research Associates, Inc.

Raleigh, North Carolina, USA
Corresponding author: keboyer@ncsu.edu

Abstract
Creating natural language tutorial dialogue systems that
realize effective strategies is a central challenge for
intelligent tutoring systems research. Traditional approaches
generally require large development time, do not generalize
well across domains, and do not match the flexibility and
natural language sophistication of human tutors. A
promising approach that may offer several benefits is data-
driven system development, in which a dialogue policy is
learned from corpora of human tutorial dialogue. To date
these learning approaches typically focus on optimizing the
tutor’s choice of act, and do not explicitly model the
instances in which the tutor chose not to act. This paper
reports on a hidden Markov modeling (HMM) approach
within human textual tutorial dialogue that explicitly
represents the tutors’ choices not to intervene. The results
show that an HMM that models tutor non-interventions
predicts tutor moves significantly better than a model that
does not explicitly represent the non-interventions. The
findings have implications for automatically modeling
tutorial strategies and for learning dialogue policies from
corpora.

 Introduction

Tutorial dialogue systems hold great promise for bringing
individualized instruction with rich natural language
dialogue to a broad population of students. Great strides
have been made toward this goal, and a number of tutorial
dialogue systems have been developed to date (e.g.,
Forbes-Riley & Litman, 2009; D’Mello et al., 2008;
Dzikovska et al., 2010; VanLehn et al., 2007). Many of
these systems are at the center of ongoing research projects
that examine such factors as affective adaptation (Forbes-
Riley & Litman, 2009; D’Mello et al., 2008), micro-level
tutorial tactics (Chi, VanLehn, & Litman, 2010), and

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

collaborative patterns (Rosé et al., 2008). Through such
investigations and by leveraging rich empirical results,
tutorial dialogue systems have grown in effectiveness and
flexibility over time, and have contributed along the way to
our understanding of fundamental processes of teaching
and learning through tutoring.

While today’s tutorial dialogue systems often achieve
levels of effectiveness exceeding that of traditional
classroom instruction (VanLehn et al., 2007), significant
challenges remain. For example, creating tutoring system
content traditionally requires substantial hand authoring
efforts. Due in part to this challenge, tutorial dialogue
systems still fall short of the effectiveness that has been
observed with expert human tutors in a mastery learning
situation (Bloom, 1984).

Machine learning approaches have the potential to
address these challenges through more flexible, robust
dialogue management. With a machine learning approach,
a tutorial dialogue policy that prescribes the system’s
behavior is learned directly from a corpus of tutorial
dialogue, rather than being manually authored. Such
approaches have demonstrated great promise in ITS
research for moving beyond traditional analysis and
leveraging the increasing number of corpora that are
available to tutoring systems researchers (Pardos, Dailey,
& Heffernan, 2010; Barnes & Stamper, 2010; Chi,
VanLehn, & Litman, 2010; Forbes-Riley & Litman, 2009;
Dzikovska et al., 2010).
 However, prior machine learning approaches focused on
modeling the type of tutor action that should be taken, and
not on the choice of whether to take action. In task-
oriented tutoring, the choice to permit students to continue
working without interruption is a viable one. The tradeoffs
involved with immediate versus delayed feedback have
been considered in a rich body of research (Shute, 2008),
but to date no research has investigated how to create a
computational model of tutor non-intervention as part of a
fully machine-learned tutorial dialogue policy. This paper
presents work toward that goal. We define two types of

489

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

tutor non-intervention: NO-REMEDIATION of buggy task
actions (i.e., the tutor does not correct a student’s error),
and NO-MENTION of correctly completed subtasks (i.e., the
tutor does not note the student’s progress within a dialogue
move). We report on a novel approach to discretizing and
automatically tagging these events of tutor non-
intervention within a corpus of tutorial dialogue.
Additionally, we learn an HMM-based dialogue policy that
accounts for the non-interventions, as evidenced by the
learned models’ ability to predict them within the corpus.

Related Work

Recent years have seen an increasing interest in data-
driven approaches to intelligent tutoring systems research.
Some of this work involves learning about the
effectiveness of different tutoring strategies. For example,
a recent line of investigation has proposed a method for
testing the effectiveness of tutoring strategies from data,
even when the data were not produced by randomized
controlled trials (Pardos, Dailey, & Heffernan, 2010). The
goal of this work is to automatically discover the most
effective contextualized approaches from among those that
an ITS already knows, and to adapt the ITS’ behavior
based on this new knowledge. Other work has leveraged
reinforcement learning to compare the effectiveness of
micro-level tactics, such as eliciting versus telling
information, in given contexts (Chi, VanLehn, & Litman,
2010).

An important complementary line of investigation
involves creating tutoring system behavior by learning it
from a corpus. This is the goal of work that examines
corpora of student problem-solving in a logic domain and
uses prior students’ success or failure to generate tutorial
feedback during new student sessions (Barnes & Stamper,
2010). It has also been the focus of prior work to learn a
dialogue policy for tutoring introductory computer science
directly from an annotated corpus of human tutoring
(Boyer et al., 2010a). In that work, it was found that hidden
Markov models (HMMs) perform better than observable
Markov, or bigram models, for predicting tutor dialogue
acts within a corpus. The prediction accuracy was further
improved by including a high-level notion of task progress.

The current work makes a step beyond the previous
work by explicitly modeling tutor non-interventions as
events within the observation sequences. Because the
overall goal of the project is to capture human tutorial
expertise within computational models of dialogue,
representing the human tutor’s choice not to take action is
an important step. Such a model may illuminate strategic
aspects of human tutors’ approaches, and has the potential
to be of great value for incorporating a learned dialogue
policy in a runtime tutoring system.

Corpus and Annotation

The tutorial dialogue corpus was collected over the course
of a human-human tutoring study in the domain of
introductory computer programming. The 48 student
participants were enrolled in a university introductory
computer science course and were learning computer
science concepts within the Java programming language.
The two tutors had experience in tutoring computer
science, but no formal training. Each student engaged in
one task-oriented textual dialogue, lasting approximately
one hour. On average, students exhibited statistically
significant learning gains from pretest to posttest (paired t-
test: p<0.0001). The students and tutors were located in
separate rooms and worked together over the network with
synchronized task views (Boyer et al., 2009). All task
actions and textual dialogue were captured within a
database. An excerpt of the corpus is displayed in Table 1.

Table 1. Corpus excerpt

Time User Dialogue Move
or Task Action

10:50:31 Student But I haven't been to strong
with parameters
[NegContentFdbk]

10:50:46 Stu. Task p
10:50:46 Stu. Task l
10:50:46 Stu. Task o
10:50:46 Stu. Task t
10:50:47 Stu. Task T
10:50:47 Stu. Task i
10:50:47 Stu. Task m
10:50:47 Stu. Task e
10:50:48 Stu. Task s
10:50:48 Stu. Task ()
10:50:48 Stu. Task ;
10:52:37 Student I'm not really sure why I'm

gettin an error for plotValue but
I'm pretty sure my parameter is
wrong [LkwmContentFdbk]

10:52:54 Tutor Yeah, it's because the
parameter is wrong [Stmt]

10:53:05 Tutor It takes a double.. and you're
giving it an array [Stmt]

Dialogue Act Annotation
The dialogue act annotation scheme in Table 2 was applied
to the entire corpus by a single annotator, and then
independently applied to 10% of the corpus by a second
annotator. The resulting Kappa statistic of 0.80 indicates
very good reliability.

490

Table 2. Dialogue act tags

Dialogue
Act Student Tutor

%
St.

%
Tu.1

ASSESSING
QUESTION

How does that
declaration
look?

Which type
should that be? .20 .09

EXTRA-
DOMAIN

May I use my
textbook?

A coordinator
will be there
soon.

.08 .03

GROUNDING Got it. Ok. .26 .05
LUKEWARM
FDBK Sort of. That’s close. .02 .02

LUKEWARM
CONTENT
FDBK

We covered
arrays in class,
but I’m not
sure I
understand
them.

Almost there,
but the second
parameter isn’t
quite right.

.01 .03

NEGATIVE
FDBK No. That’s not right. .04 .01

NEGATIVE
CONTENT
FDBK

I don’t know
how to
initialize it.

No, the counter
has to be an int. .01 .08

POSITIVE
FDBK I understand. Perfect. .09 .13

POSITIVE
CONTENT
FDBK

Yes, the
output
matches.

Right, the array
is a local
variable.

.02 .02

QUESTION How do I insert
an element?

Which approach
do you prefer? .10 .02

RESPONSE Go to 5. It will be an int. .09 .04

STATEMENT We need an
int. They start at 0. .07 .30

Task Annotation
All task actions, which involved typing or deleting
programming statements with the goal of solving the
learning task, were generated by students and were logged
at the keystroke level. Tutors viewed a synchronized
problem-solving window but could not take problem-
solving actions themselves. Each student task action was
annotated along two axes: subtask structure and
correctness. The manual subtask annotation first clustered
keystrokes into semantic events at approximately the
keyword level (e.g., for loop), then identified a high-level
subtask (e.g., “Understand the Problem,” “Module 1,”
“Module 2”) and lower-level subtasks (e.g., “Write a for
loop,” “Declare an array”), with the final tag corresponding
to a unique path along the task decomposition tree and an
instance of Java syntax. A weighted Kappa statistic
(Cohen, 1968) was used because weighted Kappa accounts
for the distance between subtasks (e.g., subtask 1-a is

1 Proportion of all tutor moves including the non-intervention
moves of NO-REMEDIATION (.09) and NO-MENTION (.09).

“closer” to subtask 1-b than to 3-c). The weighted Kappa
statistic was 0.86 (Kappa 0.58) on 20% of the corpus.
 Tagging the dialogue moves for subtask topic was a
more challenging undertaking because unlike task actions
to which the annotators were required to apply leaf tags
from the task decomposition tree, for dialogue moves the
annotators were permitted to apply a tag from any level of
the tree. The combined weighted Kappa statistic for
dialogue moves and task actions was 0.77 (Kappa 0.33). In
addition to task structure annotation, each task action was
labeled for correctness. The four labels are CORRECT,
BUGGY, INCOMPLETE, or DISPREFERRED (technically
functional but not adhering to the pedagogical goals of the
learning task). The simple Kappa was 0.80.

Tutor Non-Intervention Events

After the dialogue acts and task actions were fully
annotated, tutor non-interventions were identified within
the corpus. In terms of time, events and non-events are
heterogeneous entities: events are clearly associated with a
discrete timestamp that can be logged, while non-events
fill the continuous space around the events. Inspection of
the corpus suggested an algorithm for identifying discrete
events of tutor non-intervention (Figure 1).

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)

Initialize list uunremediatedBugs
Initialize list uunmentionedComplete

For (all sessions ss in corpus)

 For (all observations o in ss)

 If o is a buggy task action

1. If uunremediatedBugs is

non-empty, generate a NO-
REMEDIATION event before o

2. Clear uunremediatedBugs
3. Add o to uunremediatedBugs

 Else if o is a correct task action

1. Add o to list
unmentionedComplete

 Else if o is a tutor feedback OR
 o is a tutor question

1. Remove subtask to which o
refers from list
unremediatedBugs

2. Remove subtask to which o
refers from list
unmentionedComplete

4. If uunremediatedBugs is
non-empty, generate a NO-
REMEDIATION event before o and
clear uunremediatedBugs

3. Else if
unmentionedComplete is
non-empty, generate a NO-
MENTION event before o and
clear uunmentionedComplete

Figure 1. Tutor non-intervention event algorithm

491

In this algorithm, a NO-REMEDIATION event is generated
when a bug that was introduced earlier by the student has
not been remediated by the tutor before the student goes on
to introduce another bug on a different subtask. NO-
REMEDIATION events are also introduced if the tutor
provides feedback or asks a question on some subtask, say
subtask a, while a bug on another subtask, say subtask a’,
was introduced earlier and has not yet been remediated. On
the other hand, tutor NO-MENTION events capture the
instances where a tutor does not mention a correctly
completed subtask before moving on to provide feedback
or ask a question regarding a different subtask.

This algorithm is designed to be conservative, inserting
tutor non-intervention events at a restricted subset of all
possible junctures where a non-intervention event may
actually have occurred. For example, if there is more than
one bug in the list of un-remediated bugs, only one NO-
REMEDIATION event is generated (lines 11 and 30). This is
to avoid inserting more than one NO-REMEDIATION event
at a particular point in time, since the sequential modeling
approach to be applied (HMMs) would be forced to treat
these observations as occurring at different time steps. The
same multi-event problem would be encountered if a tutor
feedback move was permitted to trigger the generation of
both a NO-REMEDIATION event and a NO-MENTION event,
an occurrence that is prevented by giving priority to the
former (hence the “else” of line 33).

Modeling Dialogue Structure with HMMs

The completed sequences of dialogue acts, task correctness
labels, and tutor non-intervention events are given as input,
with the goal of learning the dialogue policy. The machine
learning framework utilizes HMMs to model sequences of
annotated observations within the corpus. HMMs are a
principled choice for this modeling task because they
correspond well to widely accepted notions of the
stochastic structure of dialogue, and have been shown to
correlate with learning (Boyer et al., 2010a). The input
sequences were preprocessed to join dependent adjacency
pairs such as questions and responses, following an
automatic adjacency-pair joining algorithm (Boyer et al.,
2009).

HMMs explicitly model hidden states within a doubly
stochastic structure (Rabiner, 1989). A first-order HMM, in
which each hidden state depends only on the immediately
preceding hidden state, is defined by the following
components:

• ∑ = {σ1, σ 2, …, σ M}, the observation symbol
alphabet

• S = {s1,s2,…,sN}, the set of hidden states
• Π=[πi], the initial probability distribution, where

πi is the probability of a sequence beginning in
hidden state si in S

• A=[aij], a transition probability distribution, where
aij is the probability of the model transitioning
from hidden state i to hidden state j

• B=[bik], an emission probability distribution
where bik is the probability of state i emitting
observation symbol k.

In this work, the observation symbol alphabet ∑ is
given; it is defined by the union of all dialogue act tags,
task correctness tags, and tutor non-intervention tags. The
transition probability distribution A, emission probability
distribution B, and initial probability distribution Π are
learned by the standard Baum-Welch algorithm for
optimizing HMM parameters (Rabiner, 1989), with five-
time random restart that included new initial parameters for
each model to reduce the probability of selecting a model
that represents only a local optimum. The number of
hidden states N is selected by running the full HMM
training algorithm including random restarts in ten-fold
cross-validation across the data and selecting the model
size with the best mean Bayesian Information Criterion,
which penalizes the log likelihood pursuant to the number
of parameters.

Learned HMM
The process described above was applied to learn a best-fit
model, which has N=4 hidden states. The emission
probability distribution of these hidden states is depicted in
Figure 2, with observation symbols whose probability was
less than 0.05 omitted for simplicity.

Figure 2. HMM that models tutor non-interventions.
Emission and transition probabilities ≥ 0.05 shown

492

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10

Bigram with
Non-
Interventions

HMM with Non-
Interventions

From State 0, which is dominated by student correct task
actions, the model is most likely to make a self-transition
back to this state; that is, students working correctly are
likely to continue to do so. From this state, the model
transitions to State 3 with probability 0.15. State 3 emits
tutor non-intervention moves of NO-REMEDIATION and
NO-MENTION, and also emits pairs of buggy task actions
and tutor non-remediations. This transition suggests that
particularly when the student has been working correctly
before, tutors are less likely to intervene at the first
occurrence of a bug in the task. State 1 reflects activities
typically associated with teaching and evaluation by the
tutor, with a high probability of self-transition, while State
2 includes active remediation and is likely to transition
back to the correct student work state.

Prediction Accuracy for Tutor Moves
To determine how well the learned model captures the
dialogue policy implicitly represented by the corpus, we
measure the accuracy with which the model predicts
human tutor dialogue moves and non-interventions. To
assess the impact on the model of adding tutor non-
intervention events, we conducted the prediction
experiment with two versions of the model: one with tutor
non-intervention events, and the other without. Figure 3
displays the prediction accuracy of the two models. Note
that although the model that includes tutor non-
interventions must discriminate among more categories, it
performs slightly better on nearly all training folds than the
model that does not include tutor non-intervention events.

The majority class baseline accuracy for the model that
includes tutor non-interventions is 0.30, which is the
relative frequency of tutor statements among all tutor
moves (including non-interventions). The corresponding
baseline accuracy for the model that does not include non-
interventions is 0.38, the relative frequency of tutor
statements among only dialogue acts.

The prediction accuracies in Figure 3 demonstrate that
the additional categories of NO-REMEDIATION and NO-
MENTION do not adversely affect the model’s ability to
predict tutor moves. In fact, the average prediction
accuracy for the model that includes non-interventions was
0.55, significantly higher than the average prediction
accuracy for the dialogue-move-only model of 0.53 (two-
tailed paired t-test: p=0.027). This improvement is likely
due in part to the fact that when considering dialogue
moves only, periods of “silence” were not modeled, and in
fact, those periods almost certainly influenced subsequent
conversation.

While the HMM clearly performs above a majority class
baseline, it is also meaningful to consider how well the
model performs compared to a less trivial baseline.
Specifically, we compared the HMM dialogue policy to an
observable Markov, or bigram, dialogue policy under the
same two conditions described above. A first-order
observable Markov model is simpler than an HMM,
defined fully by the observation symbol alphabet ∑ and the

transition probability distribution A among the symbols.
The results of the comparison are shown in Figure 4. The
average prediction accuracy of the bigram model was 0.34,
significantly lower than the average of 0.55 for the HMM
(two-tailed paired t-test: p<0.00001). These findings are
consistent with those in previous work, in which HMMs
performed similarly better than bigram models on this task
when tutor non-interventions were not considered (Boyer
et al., 2010b).

Figure 4. Prediction accuracy vs. cross-validation fold
for HMM dialogue policy and bigram dialogue policy

Conclusion and Future Work

Human tutoring features rich natural language dialogue
and generally incorporates highly flexible tutorial dialogue
policies. Creating a tutoring system capable of such
richness and flexibility poses many challenges. A
promising approach involves learning dialogue policies
directly from corpora of human tutoring. This paper has
presented a machine learning approach that explicitly
models tutors’ choices not to intervene. The learned HMM
predicts tutor dialogue moves and non-interventions within
a corpus of task-oriented tutorial dialogue. The two tutor
non-intervention moves were NO-REMEDIATION of student
buggy task actions, and NO-MENTION of correctly
completed student task actions. For comparison, an HMM
was also learned without these tutor non-intervention
events, and its prediction accuracy was lower than the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

Dialogue
Moves Only

Including
Non-
Interventions

Figure 3. HMM prediction accuracy vs. cross-
validation fold for tutor move prediction

493

prediction accuracy of the model that included the non-
interventions (55% accuracy vs. 53% accuracy; p=0.027).
The experiments using this simplified model of delayed
feedback indicate that tutor non-interventions are desirable
to model within task-oriented dialogue, where choosing not
to interrupt the student’s problem solving is often a viable
strategy. The prediction accuracy results suggest that these
non-intervention events can be handled well by a learned
dialogue policy model, and that the periods of “silence”
may impact subsequent dialogue.

There are several notable limitations to the current work.
First, the tutoring corpus reflects non-expert tutoring,
which is known to have many important differences from
expert tutoring. Applying the techniques to corpora of
expert tutoring is an important direction for future work.
Secondly, the algorithm for identifying tutor non-
interventions is conservative, and as such probably omits
some non-intervention tags that occurred in reality. Finally,
the regularities introduced by the deterministic algorithm
may facilitate model training and inflate the prediction
accuracy, a possibility that should be further explored.

This investigation highlights some important directions
for future work. First, learned dialogue models must take
advantage of more detailed task information and timing
data; the current work has only scratched the surface of
these sources of information. Additionally, the time
required to manually annotate the dialogue and task actions
is high, and research toward unsupervised dialogue act
tagging and unsupervised plan recognition is of paramount
importance as the field moves toward data-driven creation
of tutorial dialogue systems.

Acknowledgments. The authors wish to thank Sidney
D’Mello, Danielle McNamara, Andrew Olney, and Natalie
Person for conversations that inspired this analysis. This
work is supported in part by the NC State University
Department of Computer Science along with the National
Science Foundation through Grants REC-0632450, IIS-
0812291, DRL-1007962 and the STARS Alliance Grant
CNS-0739216. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the
participants, and do not necessarily represent the official
views, opinions, or policy of the National Science
Foundation.

References

Barnes, T., & Stamper, J. (2010). Automatic hint
generation for logic proof tutoring using historical data.
Proceedings of ITS 2010, Pittsburgh, PA. 3-14.

Bloom, B. S. (1984). The 2 Sigma problem: The search for
methods of group instruction as effective as one-to-one
tutoring. Educational Researcher, 13(6), 4-16.

Boyer, K.E., Phillips, R., Ingram, A., Ha, E.Y., Wallis,
M.D., Vouk, M.A., & Lester, J. (2010a). Characterizing
the effectiveness of tutorial dialogue with hidden

Markov models. Proceedings of ITS 2010, 55-64.

Boyer, K.E., Phillips, R., Ha, E.Y., Wallis, M.D., Vouk,
M.A., & Lester, J. (2010b). Leveraging hidden dialogue
state to select tutorial moves. Proceedings of the NAACL
HLT Workshop on Innovative Use of NLP for Building
Educational Applications, 66-73.

Boyer, K.E., Phillips, R., Ha, E.Y., Wallis, M.D., Vouk,
M.A., & Lester, J. (2009). Modeling dialogue structure
with adjacency pair analysis and hidden Markov models.
Proceedings of NAACL HLT Short Papers, 49-52.

Chi, M., VanLehn, K., & Litman, D. (2010). Do micro-
level tutorial decisions matter: Applying reinforcement
learning to induce pedagogical tutorial tactics.
Proceedings ITS 2010, 224-234.

Cohen, J. (1968). Weighted kappa: Nominal scale
agreement with provision for scaled disagreement or
partial credit. Psychological Bulletin, 70(4), 213-220.

D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman,
P., White, H., Person, N., Kort, B., el Kaliouby, R., &
Picard, R. (2008). AutoTutor detects and responds to
learners' affective and cognitive states. Proceedings of
the Workshop on Emotional and Cognitive Issues in ITS
in Conjunction with ITS 2008, 31-43.

Dzikovska, M. O., Moore, J. D., Steinhauser, N.,
Campbell, G., Farrow, E., & Callaway, C. B. (2010).
BEETLE II: A system for tutoring and computational
linguistics experimentation. Proceedings of Association
for Computational Linguistics (ACL) System
Demonstrations Track, 13-18.

Forbes-Riley, K., & Litman, D. (2009). Adapting to
student uncertainty improves tutoring dialogues.
Proceedings of AIED 2009, 33-40.

Pardos, Z., Dailey, M., & Heffernan, N. (2010). Learning
what works in ITS from non-traditional randomized
controlled trial data. Proceedings of ITS 2010, 41-50.

Rabiner, L. R. (1989). A tutorial on hidden Markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 257-286.

Rosé, C., Wang, Y. C., Cui, Y., Arguello, J., Stegmann, K.,
Weinberger, A., & Fischer, F. (2008). Analyzing
collaborative learning processes automatically:
Exploiting the advances of computational linguistics in
computer-supported collaborative learning. International
Journal of Computer-Supported Collaborative Learning,
3(3), 237-271.

Shute, V. J. (2008). Focus on formative feedback. Review
of Educational Research, 78(1), 153.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P.,
Olney, A., & Rosé, C. P. (2007). When are tutorial
dialogues more effective than reading? Cognitive
Science, 31(1), 3-62.

494

