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Abstract 
Creating natural language tutorial dialogue systems that 
realize effective strategies is a central challenge for 
intelligent tutoring systems research. Traditional approaches 
generally require large development time, do not generalize 
well across domains, and do not match the flexibility and 
natural language sophistication of human tutors. A 
promising approach that may offer several benefits is data-
driven system development, in which a dialogue policy is 
learned from corpora of human tutorial dialogue. To date 
these learning approaches typically focus on optimizing the 
tutor’s choice of act, and do not explicitly model the 
instances in which the tutor chose not to act. This paper 
reports on a hidden Markov modeling (HMM) approach 
within human textual tutorial dialogue that explicitly 
represents the tutors’ choices not to intervene. The results 
show that an HMM that models tutor non-interventions 
predicts tutor moves significantly better than a model that 
does not explicitly represent the non-interventions. The 
findings have implications for automatically modeling 
tutorial strategies and for learning dialogue policies from 
corpora. 

 Introduction   

Tutorial dialogue systems hold great promise for bringing 
individualized instruction with rich natural language 
dialogue to a broad population of students. Great strides 
have been made toward this goal, and a number of tutorial 
dialogue systems have been developed to date (e.g., 
Forbes-Riley & Litman, 2009; D’Mello et al., 2008; 
Dzikovska et al., 2010; VanLehn et al., 2007). Many of 
these systems are at the center of ongoing research projects 
that examine such factors as affective adaptation (Forbes-
Riley & Litman, 2009; D’Mello et al., 2008), micro-level 
tutorial tactics (Chi, VanLehn, & Litman, 2010), and 
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collaborative patterns (Rosé et al., 2008). Through such 
investigations and by leveraging rich empirical results, 
tutorial dialogue systems have grown in effectiveness and 
flexibility over time, and have contributed along the way to 
our understanding of fundamental processes of teaching 
and learning through tutoring. 

While today’s tutorial dialogue systems often achieve 
levels of effectiveness exceeding that of traditional 
classroom instruction (VanLehn et al., 2007), significant 
challenges remain. For example, creating tutoring system 
content traditionally requires substantial hand authoring 
efforts. Due in part to this challenge, tutorial dialogue 
systems still fall short of the effectiveness that has been 
observed with expert human tutors in a mastery learning 
situation (Bloom, 1984).  

Machine learning approaches have the potential to 
address these challenges through more flexible, robust 
dialogue management. With a machine learning approach, 
a tutorial dialogue policy that prescribes the system’s 
behavior is learned directly from a corpus of tutorial 
dialogue, rather than being manually authored. Such 
approaches have demonstrated great promise in ITS 
research for moving beyond traditional analysis and 
leveraging the increasing number of corpora that are 
available to tutoring systems researchers (Pardos, Dailey, 
& Heffernan, 2010; Barnes & Stamper, 2010; Chi, 
VanLehn, & Litman, 2010; Forbes-Riley & Litman, 2009; 
Dzikovska et al., 2010).  
 However, prior machine learning approaches focused on 
modeling the type of tutor action that should be taken, and 
not on the choice of whether to take action. In task-
oriented tutoring, the choice to permit students to continue 
working without interruption is a viable one. The tradeoffs 
involved with immediate versus delayed feedback have 
been considered in a rich body of research (Shute, 2008), 
but to date no research has investigated how to create a 
computational model of tutor non-intervention as part of a 
fully machine-learned tutorial dialogue policy. This paper 
presents work toward that goal. We define two types of 
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tutor non-intervention: NO-REMEDIATION of buggy task 
actions (i.e., the tutor does not correct a student’s error), 
and NO-MENTION of correctly completed subtasks (i.e., the 
tutor does not note the student’s progress within a dialogue 
move). We report on a novel approach to discretizing and 
automatically tagging these events of tutor non-
intervention within a corpus of tutorial dialogue. 
Additionally, we learn an HMM-based dialogue policy that 
accounts for the non-interventions, as evidenced by the 
learned models’ ability to predict them within the corpus. 

Related Work 

Recent years have seen an increasing interest in data-
driven approaches to intelligent tutoring systems research. 
Some of this work involves learning about the 
effectiveness of different tutoring strategies. For example, 
a recent line of investigation has proposed a method for 
testing the effectiveness of tutoring strategies from data, 
even when the data were not produced by randomized 
controlled trials (Pardos, Dailey, & Heffernan, 2010). The 
goal of this work is to automatically discover the most 
effective contextualized approaches from among those that 
an ITS already knows, and to adapt the ITS’ behavior 
based on this new knowledge. Other work has leveraged 
reinforcement learning to compare the effectiveness of 
micro-level tactics, such as eliciting versus telling 
information, in given contexts (Chi, VanLehn, & Litman, 
2010). 

An important complementary line of investigation 
involves creating tutoring system behavior by learning it 
from a corpus. This is the goal of work that examines 
corpora of student problem-solving in a logic domain and 
uses prior students’ success or failure to generate tutorial 
feedback during new student sessions (Barnes & Stamper, 
2010). It has also been the focus of prior work to learn a 
dialogue policy for tutoring introductory computer science 
directly from an annotated corpus of human tutoring 
(Boyer et al., 2010a). In that work, it was found that hidden 
Markov models (HMMs) perform better than observable 
Markov, or bigram models, for predicting tutor dialogue 
acts within a corpus. The prediction accuracy was further 
improved by including a high-level notion of task progress. 

The current work makes a step beyond the previous 
work by explicitly modeling tutor non-interventions as 
events within the observation sequences. Because the 
overall goal of the project is to capture human tutorial 
expertise within computational models of dialogue, 
representing the human tutor’s choice not to take action is 
an important step. Such a model may illuminate strategic 
aspects of human tutors’ approaches, and has the potential 
to be of great value for incorporating a learned dialogue 
policy in a runtime tutoring system.   

Corpus and Annotation 

The tutorial dialogue corpus was collected over the course 
of a human-human tutoring study in the domain of 
introductory computer programming. The 48 student 
participants were enrolled in a university introductory 
computer science course and were learning computer 
science concepts within the Java programming language. 
The two tutors had experience in tutoring computer 
science, but no formal training. Each student engaged in 
one task-oriented textual dialogue, lasting approximately 
one hour. On average, students exhibited statistically 
significant learning gains from pretest to posttest (paired t-
test: p<0.0001). The students and tutors were located in 
separate rooms and worked together over the network with 
synchronized task views (Boyer et al., 2009). All task 
actions and textual dialogue were captured within a 
database. An excerpt of the corpus is displayed in Table 1.  
 

Table 1. Corpus excerpt 

Time User Dialogue Move  
or Task Action 

10:50:31  Student    But I haven't been to strong 
with parameters   
[NegContentFdbk]                       

10:50:46 Stu. Task p 
10:50:46 Stu. Task l 
10:50:46 Stu. Task o 
10:50:46 Stu. Task t 
10:50:47 Stu. Task T 
10:50:47 Stu. Task i 
10:50:47 Stu. Task m 
10:50:47 Stu. Task e 
10:50:48 Stu. Task s 
10:50:48 Stu. Task () 
10:50:48 Stu. Task ; 
10:52:37  Student    I'm not really sure why I'm 

gettin an error for plotValue but 
I'm pretty sure my parameter is 
wrong [LkwmContentFdbk]          

10:52:54  Tutor         Yeah, it's because the 
parameter is wrong [Stmt]           

10:53:05  Tutor         It takes a double.. and you're 
giving it an array [Stmt]                

Dialogue Act Annotation 
The dialogue act annotation scheme in Table 2 was applied 
to the entire corpus by a single annotator, and then 
independently applied to 10% of the corpus by a second 
annotator. The resulting Kappa statistic of 0.80 indicates 
very good reliability.   
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Table 2. Dialogue act tags 

Dialogue 
Act Student Tutor 

%  
St. 

% 
Tu.1 

ASSESSING 
QUESTION 

How does that 
declaration 
look? 

Which type 
should that be? .20 .09 

EXTRA-
DOMAIN 

May I use my 
textbook? 

A coordinator 
will be there 
soon. 

.08 .03 

GROUNDING Got it. Ok. .26 .05 
LUKEWARM 
FDBK Sort of. That’s close. .02 .02 

LUKEWARM 
CONTENT 
FDBK 

We covered 
arrays in class, 
but I’m not 
sure I 
understand 
them. 

Almost there, 
but the second 
parameter isn’t 
quite right. 

.01 .03 

NEGATIVE 
FDBK No. That’s not right. .04 .01 

NEGATIVE 
CONTENT 
FDBK 

I don’t know 
how to 
initialize it. 

No, the counter 
has to be an int. .01 .08 

POSITIVE  
FDBK I understand. Perfect. .09 .13 

POSITIVE 
CONTENT 
FDBK 

Yes, the 
output 
matches. 

Right, the array 
is a local 
variable. 

.02 .02 

QUESTION How do I insert 
an element? 

Which approach 
do you prefer? .10 .02 

RESPONSE Go to 5. It will be an int. .09 .04 

STATEMENT We need an 
int. They start at 0. .07 .30 

Task Annotation 
All task actions, which involved typing or deleting 
programming statements with the goal of solving the 
learning task, were generated by students and were logged 
at the keystroke level. Tutors viewed a synchronized 
problem-solving window but could not take problem-
solving actions themselves. Each student task action was 
annotated along two axes: subtask structure and 
correctness. The manual subtask annotation first clustered 
keystrokes into semantic events at approximately the 
keyword level (e.g., for loop), then identified a high-level 
subtask (e.g., “Understand the Problem,” “Module 1,” 
“Module 2”) and lower-level subtasks (e.g., “Write a for 
loop,” “Declare an array”), with the final tag corresponding 
to a unique path along the task decomposition tree and an 
instance of Java syntax. A weighted Kappa statistic 
(Cohen, 1968) was used because weighted Kappa accounts 
for the distance between subtasks (e.g., subtask 1-a is 

                                                
1 Proportion of all tutor moves including the non-intervention 
moves of NO-REMEDIATION (.09) and NO-MENTION (.09).  
 

“closer” to subtask 1-b than to 3-c). The weighted Kappa 
statistic was 0.86 (Kappa 0.58) on 20% of the corpus. 
 Tagging the dialogue moves for subtask topic was a 
more challenging undertaking because unlike task actions 
to which the annotators were required to apply leaf tags 
from the task decomposition tree, for dialogue moves the 
annotators were permitted to apply a tag from any level of 
the tree. The combined weighted Kappa statistic for 
dialogue moves and task actions was 0.77 (Kappa 0.33). In 
addition to task structure annotation, each task action was 
labeled for correctness. The four labels are CORRECT, 
BUGGY, INCOMPLETE, or DISPREFERRED (technically 
functional but not adhering to the pedagogical goals of the 
learning task). The simple Kappa was 0.80. 

Tutor Non-Intervention Events 

After the dialogue acts and task actions were fully 
annotated, tutor non-interventions were identified within 
the corpus. In terms of time, events and non-events are 
heterogeneous entities: events are clearly associated with a 
discrete timestamp that can be logged, while non-events 
fill the continuous space around the events. Inspection of 
the corpus suggested an algorithm for identifying discrete 
events of tutor non-intervention (Figure 1).   
 
1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 
10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 
24) 
25) 
26) 
27) 
28) 
29) 
30) 
31) 
32) 
33) 
34) 
35) 
36) 
37) 

Initialize list uunremediatedBugs 
Initialize list uunmentionedComplete 
 
For (all sessions ss in corpus) 
 
 For (all observations o in ss) 
   
   If o is a buggy task action 

 
1. If uunremediatedBugs is 

non-empty, generate a NO-
REMEDIATION event before o 

2. Clear uunremediatedBugs 
3. Add o to uunremediatedBugs 

 
   Else if o is a correct task action 
 

1. Add o to list 
unmentionedComplete 

    
   Else if o is a tutor feedback OR 
           o is a tutor question 

1. Remove subtask to which o 
refers from list 
unremediatedBugs 

2. Remove subtask to which o 
refers from list 
unmentionedComplete 

4. If uunremediatedBugs is 
non-empty, generate a NO-
REMEDIATION event before o and 
clear uunremediatedBugs 

3. Else if 
unmentionedComplete is 
non-empty, generate a NO-
MENTION event before o and 
clear uunmentionedComplete 

Figure 1. Tutor non-intervention event algorithm 
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In this algorithm, a NO-REMEDIATION event is generated 
when a bug that was introduced earlier by the student has 
not been remediated by the tutor before the student goes on 
to introduce another bug on a different subtask. NO-
REMEDIATION events are also introduced if the tutor 
provides feedback or asks a question on some subtask, say 
subtask a, while a bug on another subtask, say subtask a’, 
was introduced earlier and has not yet been remediated. On 
the other hand, tutor NO-MENTION events capture the 
instances where a tutor does not mention a correctly 
completed subtask before moving on to provide feedback 
or ask a question regarding a different subtask.  

This algorithm is designed to be conservative, inserting 
tutor non-intervention events at a restricted subset of all 
possible junctures where a non-intervention event may 
actually have occurred. For example, if there is more than 
one bug in the list of un-remediated bugs, only one NO-
REMEDIATION event is generated (lines 11 and 30). This is 
to avoid inserting more than one NO-REMEDIATION event 
at a particular point in time, since the sequential modeling 
approach to be applied (HMMs) would be forced to treat 
these observations as occurring at different time steps. The 
same multi-event problem would be encountered if a tutor 
feedback move was permitted to trigger the generation of 
both a NO-REMEDIATION event and a NO-MENTION event, 
an occurrence that is prevented by giving priority to the 
former (hence the “else” of line 33). 

Modeling Dialogue Structure with HMMs 

The completed sequences of dialogue acts, task correctness 
labels, and tutor non-intervention events are given as input, 
with the goal of learning the dialogue policy. The machine 
learning framework utilizes HMMs to model sequences of 
annotated observations within the corpus. HMMs are a 
principled choice for this modeling task because they 
correspond well to widely accepted notions of the 
stochastic structure of dialogue, and have been shown to 
correlate with learning (Boyer et al., 2010a). The input 
sequences were preprocessed to join dependent adjacency 
pairs such as questions and responses, following an 
automatic adjacency-pair joining algorithm (Boyer et al., 
2009).  

HMMs explicitly model hidden states within a doubly 
stochastic structure (Rabiner, 1989). A first-order HMM, in 
which each hidden state depends only on the immediately 
preceding hidden state, is defined by the following 
components: 

• ∑ = {σ1, σ 2, …, σ M}, the observation symbol 
alphabet 

• S = {s1,s2,…,sN}, the set of hidden states 
• Π=[πi], the initial probability distribution, where 

πi is the probability of a sequence beginning in 
hidden state si in S  

• A=[aij], a transition probability distribution, where 
aij is the probability of the model transitioning 
from hidden state i to hidden state j 

• B=[bik], an emission probability distribution 
where bik is the probability of state i emitting 
observation symbol k.  

In this work, the observation symbol alphabet ∑ is 
given; it is defined by the union of all dialogue act tags, 
task correctness tags, and tutor non-intervention tags. The 
transition probability distribution A, emission probability 
distribution B, and initial probability distribution Π are 
learned by the standard Baum-Welch algorithm for 
optimizing HMM parameters (Rabiner, 1989), with five-
time random restart that included new initial parameters for 
each model to reduce the probability of selecting a model 
that represents only a local optimum. The number of 
hidden states N is selected by running the full HMM 
training algorithm including random restarts in ten-fold 
cross-validation across the data and selecting the model 
size with the best mean Bayesian Information Criterion, 
which penalizes the log likelihood pursuant to the number 
of parameters.  

Learned HMM 
The process described above was applied to learn a best-fit 
model, which has N=4 hidden states. The emission 
probability distribution of these hidden states is depicted in 
Figure 2, with observation symbols whose probability was 
less than 0.05 omitted for simplicity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. HMM that models tutor non-interventions. 
Emission and transition probabilities ≥ 0.05 shown 
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From State 0, which is dominated by student correct task 
actions, the model is most likely to make a self-transition 
back to this state; that is, students working correctly are 
likely to continue to do so. From this state, the model 
transitions to State 3 with probability 0.15. State 3 emits 
tutor non-intervention moves of NO-REMEDIATION and 
NO-MENTION, and also emits pairs of buggy task actions 
and tutor non-remediations. This transition suggests that 
particularly when the student has been working correctly 
before, tutors are less likely to intervene at the first 
occurrence of a bug in the task. State 1 reflects activities 
typically associated with teaching and evaluation by the 
tutor, with a high probability of self-transition, while State 
2 includes active remediation and is likely to transition 
back to the correct student work state.   

Prediction Accuracy for Tutor Moves 
To determine how well the learned model captures the 
dialogue policy implicitly represented by the corpus, we 
measure the accuracy with which the model predicts 
human tutor dialogue moves and non-interventions. To 
assess the impact on the model of adding tutor non-
intervention events, we conducted the prediction 
experiment with two versions of the model: one with tutor 
non-intervention events, and the other without. Figure 3 
displays the prediction accuracy of the two models. Note 
that although the model that includes tutor non-
interventions must discriminate among more categories, it 
performs slightly better on nearly all training folds than the 
model that does not include tutor non-intervention events.  

The majority class baseline accuracy for the model that 
includes tutor non-interventions is 0.30, which is the 
relative frequency of tutor statements among all tutor 
moves (including non-interventions). The corresponding 
baseline accuracy for the model that does not include non-
interventions is 0.38, the relative frequency of tutor 
statements among only dialogue acts.   

The prediction accuracies in Figure 3 demonstrate that 
the additional categories of NO-REMEDIATION and NO-
MENTION do not adversely affect the model’s ability to 
predict tutor moves. In fact, the average prediction 
accuracy for the model that includes non-interventions was 
0.55, significantly higher than the average prediction 
accuracy for the dialogue-move-only model of 0.53 (two-
tailed paired t-test: p=0.027). This improvement is likely 
due in part to the fact that when considering dialogue 
moves only, periods of “silence” were not modeled, and in 
fact, those periods almost certainly influenced subsequent 
conversation.  

While the HMM clearly performs above a majority class 
baseline, it is also meaningful to consider how well the 
model performs compared to a less trivial baseline. 
Specifically, we compared the HMM dialogue policy to an 
observable Markov, or bigram, dialogue policy under the 
same two conditions described above. A first-order 
observable Markov model is simpler than an HMM, 
defined fully by the observation symbol alphabet ∑ and the 

transition probability distribution A among the symbols. 
The results of the comparison are shown in Figure 4.  The 
average prediction accuracy of the bigram model was 0.34, 
significantly lower than the average of 0.55 for the HMM 
(two-tailed paired t-test: p<0.00001). These findings are 
consistent with those in previous work, in which HMMs 
performed similarly better than bigram models on this task 
when tutor non-interventions were not considered (Boyer 
et al., 2010b). 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 

 
Figure 4. Prediction accuracy vs. cross-validation fold 
for HMM dialogue policy and bigram dialogue policy 

Conclusion and Future Work 

Human tutoring features rich natural language dialogue 
and generally incorporates highly flexible tutorial dialogue 
policies. Creating a tutoring system capable of such 
richness and flexibility poses many challenges. A 
promising approach involves learning dialogue policies 
directly from corpora of human tutoring. This paper has 
presented a machine learning approach that explicitly 
models tutors’ choices not to intervene. The learned HMM 
predicts tutor dialogue moves and non-interventions within 
a corpus of task-oriented tutorial dialogue. The two tutor 
non-intervention moves were NO-REMEDIATION of student 
buggy task actions, and NO-MENTION of correctly 
completed student task actions. For comparison, an HMM 
was also learned without these tutor non-intervention 
events, and its prediction accuracy was lower than the 
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Figure 3. HMM prediction accuracy vs. cross-
validation fold for tutor move prediction 
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prediction accuracy of the model that included the non-
interventions (55% accuracy vs. 53% accuracy; p=0.027). 
The experiments using this simplified model of delayed 
feedback indicate that tutor non-interventions are desirable 
to model within task-oriented dialogue, where choosing not 
to interrupt the student’s problem solving is often a viable 
strategy. The prediction accuracy results suggest that these 
non-intervention events can be handled well by a learned 
dialogue policy model, and that the periods of “silence” 
may impact subsequent dialogue. 

There are several notable limitations to the current work. 
First, the tutoring corpus reflects non-expert tutoring, 
which is known to have many important differences from 
expert tutoring. Applying the techniques to corpora of 
expert tutoring is an important direction for future work. 
Secondly, the algorithm for identifying tutor non-
interventions is conservative, and as such probably omits 
some non-intervention tags that occurred in reality. Finally, 
the regularities introduced by the deterministic algorithm 
may facilitate model training and inflate the prediction 
accuracy, a possibility that should be further explored. 

This investigation highlights some important directions 
for future work. First, learned dialogue models must take 
advantage of more detailed task information and timing 
data; the current work has only scratched the surface of 
these sources of information. Additionally, the time 
required to manually annotate the dialogue and task actions 
is high, and research toward unsupervised dialogue act 
tagging and unsupervised plan recognition is of paramount 
importance as the field moves toward data-driven creation 
of tutorial dialogue systems. 
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