
Dissimilarity Kernels for Paraphrase Identification

Mihai Lintean and Vasile Rus
Department of Computer Science
Institute for Intelligent Systems

The University of Memphis
Memphis, TN 38152, USA

mclinten,vrus@memphis.edu

Abstract

We present in this paper a novel solution to the problem of
paraphrase identification based on lexical dissimilarity ker-
nels. Lexical kernels in conjunction with Support Vector Ma-
chines are preferred over other learning methods, e.g. de-
cision trees, due to their ability to handle a high number
of features. Dissimilarity-based kernels emphasize dissimi-
larities among text fragments and therefore are appropriate
for text similarity tasks characterized by high lexical over-
lap. We conducted experiments with our kernels on the Mi-
crosoft Research (MSR) Paraphrase Corpus, a standardized
data set used for assessing approaches to paraphrase identi-
fication. Our reported accuracy results are competitive and
robust when compared to state-of-the-art single-model ap-
proaches. The results were obtained using 10-fold cross-
validation over the entire corpus. We also report competitive
results on the test portion of the MSR Paraphrase Corpus,
which is the standard way to report results on this corpus.

Introduction
Assessing the semantic similarity of texts (words, sentences,
paragraphs, documents) is an important task in many appli-
cations ranging from question answering (Ibrahim, Katz and
Lin 2003) to educational systems (Graesser et al. 2005) to
automatic detection of duplicate bug reports in software test-
ing (Rus et al. 2009).

The similarity of two texts can be defined quantitatively or
qualitatively in the form of semantic relations such as elab-
oration (Rus et al. 2009), entailment (Dagan, Glickman and
Magnini 2005), or paraphrase (Dolan and Brockett 2005).
We focus in this paper on the semantic relation of paraphrase
between two sentences.

As an example of a paraphrase relation, we show below a
pair of sentences from the Microsoft Research (MSR) Para-
phrase Corpus (Dolan and Brockett 2005) in which Text A
is a paraphrase of Text B and vice versa.

Text A: York had no problem with MTAs insisting the de-
cision to shift funds had been within its legal rights.

Text B: York had no problem with MTAs saying the deci-
sion to shift funds was within its powers.

We propose an approach that assesses the similarity of
dissimilarities between the two sentences in a pair. That is,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we first represent each instance (two sentences which may
be or not in a paraphrase relation) in the dataset as a vec-
tor of dissimilarities. There is one dimension in the vector
for each word or sequence of words (bigrams) in the input
sentences. The corresponding value for each dimension is
non-zero only for words and sequences of words that are
present in one sentence but not the other. Dimensions which
correspond to common words or sequences are zero. A ker-
nel function is then defined on the dissimilarity vectors that
computes the degree of similarity between any two vectors,
i.e. it quantifies the similarity of the dissimilarities.

There are two major differences between our work re-
ported here and previous efforts on sentential paraphrase
identification. First, our method relies on lexical kernels de-
fined over words and sequences of words in the input sen-
tences. The kernels are dissimilarity kernels because they
focus on dissimilarities between two sentences of an in-
stance. We use the kernels in combination with a dual learn-
ing method, i.e. Support Vector Machines (SVMs), to effi-
ciently handle the high-dimensionality of the representation
space for the instances. The space has one dimension for
each possible word or combination of words. Dual learn-
ing methods handle examples by computing dot-products in
an efficient way without explicitly iterating over all features.
Second, we report more robust results obtained using 10-fold
cross-validation in addition to using the original training-
testing split in the MSR corpus. All previously reported in-
vestigations used the original testing subset of the corpus to
report results.

The paper is organized as follows. Next section, Re-
lated Work, discusses previous work in the area of para-
phrase identification highlighting major points and differ-
ences among these approaches. The Similarity of Dissim-
ilarities Approach section describes the basic idea of our
approach with an emphasis on dissimilarity kernels. The
Experiments Results section presents the experimental setup
and discusses the results. The paper ends with conclusions
and future work.

Related Work
Previous attempts to address the task of paraphrase iden-
tification range from simple to sophisticated. An example
of a simple, but accurate approach was proposed by Zhang
and Patrick (2005) who reported best results when using

263

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

a small set of word substring overlap features (they used
four features) in combination with a decision tree learning
method. They also tried additional text canonicalization pro-
cessing steps, such as converting passive voice sentence to
active voice, but the overall accuracy dropped. The sim-
ple approach of Zhang and Patrick is slightly better than
the best results reported by Mihalcea, Corley, and Strappar-
ava (2006) who used word-to-word similarity metrics based
on word distributional information in corpora or knowledge
embedded in a lexical database (WordNet; (Pedersen et al.
2004)). Mihalcea and colleagues report best results when
using an average over all metrics. It seems that one prob-
lem with Mihalcea and colleagues’ approach is the greedy
strategy used to semantically match a word from one sen-
tence to a word from the other sentence in a pair. They
match the word with the maximum similarity among all
the words in the second sentence. Fernando and Steven-
son (2008) on the other hand used the same basic idea of
using word similarity metrics to identify paraphrases but in-
stead of adopting a greedy strategy they opted for a more
global strategy in which the similarity of all pairs of words
is considered instead of just the maximum similarities. Fer-
nando and Stevenson’s approach is called matrix similarity
and provided significantly better results than Mihalcea and
colleagues in terms of accuracy. However, Mihalcea, Corley,
and Strapparava (2006) had better recall results. An example
of a sophisticated approach is the one recently proposed by
Das and Smith (2009) who use a probabilistic approach that
relies on both syntactic and lexical semantics information to
decide whether two sentences are paraphrases or not.

From one perspective, the above methods can be classi-
fied as similarity-centered, dissimilarity-centered, or a com-
bination of similarity and dissimilarity approaches. The
similarity-centered (e.g., Mihalcea, Corley, and Strappar-
ava (2006); Fernando and Stevenson (2008); Das and Smith
(2009)) focus on how similar two sentences are, based on
which a similarity score is computed which is then used to
make a decision: paraphrase or not. On the other hand, other
researchers observed that sentential paraphrases in general
have a high degree of lexical overlap and thus decided to fo-
cus on dissimilarities between sentences in a pair (Qiu et al.
2006). Some others focused on both similarities and dissim-
ilarities (Lintean and Rus 2009; Wan et al. 2006). Our core
approach falls within the dissimilarity-centered category as
the basic idea is to detect the degree of dissimilarity between
the two sentences in a pair. We use this basic idea in combi-
nation with Support Vector Machines to build up classifiers
from the training data.

Support Vector Machines (SVMs; (Shave-Taylor and
Cristianini 2000)) are one class of supervised machine learn-
ing methods that can be used for classification and regres-
sion tasks. SVMs search for a separation hyperplane that di-
vides the training instances, represented as points in a multi-
dimensional space, into classes. SVMs aim at finding a hy-
perplane that simultaneously minimizes the empirical classi-
fication error and maximizes the geometric margin between
the hyperplane and the nearest data points. Maximum-
margin hyperplanes lead in general to smaller generalization
errors, a desirable outcome. SVMs rely on a kernel function

and solving a quadratic programming optimization problem
with linear constraints for which techniques and methods
exist. Due to its ability to work with highly-dimensional
spaces, SVMs are a good fit for tackling natural language
processing problems such as the one we address in this pa-
per. Of particular interest was the definition of new kernel
functions that range from substring kernels that compute a
weighted-sum of common substrings in two documents in
order to classify them (Lohdi et al. 2008) to dependency
kernels that compute dependency substring overlap (Kate
2008). Along the same lines, we define our own kernel
that quantifies the degree of dissimilarity among two sen-
tences given with each instance of our dataset. Kernelized
SVMs have been previously studied by (Zanzotto, Pannac-
chiotti and Moschitti 2009) for the task of recognizing tex-
tual entailnment. Their method differs from ours in that they
look at similarities between the syntactic trees of the paired
sentences. To the best of our knowledge, no one has ap-
proached the paraphrase identification task with a newly de-
fined kernel function although standard kernels have been
used. For instance, Wan et al. (2006) have used a small set
of expert-defined features for the input space together with a
polynomial kernel available in WEKA, a machine learning
toolkit.

Similarity of Dissimilarities Approach
Our approach is based on representing each instance, i.e.
pair of sentences, in a vectorial representation in which there
is a dimension for each word or sequences of words in the
data. Actually, dimensions correspond to word types1 or
sequences of word types. We only experimented with un-
igrams and bigrams. Bigrams can be considered equivalent
to using word order information. As Collins (1996) noted,
70% of the dependencies in English are between adjacent
words, which mean bigrams can capture many syntactic de-
pendencies. The value along each dimension in this vectorial
representation is zero if the corresponding word-type does
not occur in any of the paired sentences, or occurs in both
sentences. If a word type or sequence is present in a sen-
tence but not the other, then the value is non-zero. Non-zero
values can represent weights that measure the importance
of the dimension/word-type for a particular instance. Vari-
ous weighting schemes are possible: binary, raw frequency,
idf (Dumais 1991) or entropy. We report results using bi-
nary and raw frequency weights, leaving the other schemes
for future studies. Based on this representation, a kernel
is then defined that efficiently computes the similarities be-
tween these vectors. That is, two instances that have similar
dissimilarities should be projected close to each other in the
feature space generated by the kernel.

Kernels
The role of a kernel in Support Vector Machines is to map
the initial input space into a new space in which a linear
hyperplane could separate the instances. As long as one can
find an efficient way to compute the kernel, there is no need
to operate in the newly projected feature space. According

1A word type is an unique word in the input texts

264

to Mercer’s Theorem (Shave-Taylor and Cristianini 2000),
any semi-positive definite, symmetric function can serve as a
kernel. One simple SVMs kernel for our problem and vector
representation is to count the number of common words or
word sequences of two given instances. Such kernels are a
generalization from string to word sequences of the string
kernel proposed by Lodhi et al. (2008).

For the paraphrase identification problem, given that one
instance is represented by a pair of two sentences, we will
first derive the vector representation described earlier and
then define a kernel that computes the number of similarities
among these vectors. As the vectors encode dissimilarities,
we actually compute the degree of two instances having the
same kind of dissimilarities between the sentences of the in-
stance. That is, the assumption is that instances which have
many common dissimilarities should be very similar or next
to each other in the projected feature space.

We define the kernel value between two instances A and B
of paired sentences (SA1, SA2) and (SB1, SB2) as in Equa-
tion 1. We represent sentences by their corresponding set of
n-grams (unigrams or bigrams; punctuation can also be in-
cluded here). We denote with SA1ΔSA2 the symmetric dif-
ference between the two sets, meaning the n-grams present
in SA1 or SA2 but not both, while w1 ≡ w2 means identical
n-grams. The weight function retrieves the weight for the
corresponding n-gram. We use two weights, binary and raw
frequency of types, in the reported experiments.

K(A,B) =
∑

w1∈SA1ΔSA2
w2∈SB1ΔSB2

w1≡w2

weight(w1) ∗ weight(w2) (1)

Although equation 1 suggests, in worst case scenario, a
quadratic time complexity in the length of all four sentences,
we can achieve linear complexity on the number of differ-
ences that were found in the paired sentences. First, to de-
tect the n-grams that are different between the two paired
sentences in each instance, we can have quadratic complex-
ity, if a simple method of comparing all n-grams is used, or
achieve an even better complexity of O(nlog(n)), if we do a
quick-sort on the n-grams before comparing them. However,
this can be done initially on each instance, before applying
the SVM classifier, and making sure that, after the compari-
son, the detected differences are lexically sorted. As a result,
the instances will be represented by sorted lists of n-gram.
Then, the complexity of our kernel function is reduced to a
simple linear comparison on two sorted lists.

Therefore, a big advantage of the proposed kernel is its
linear time complexity. A second advantage would be the
ease of interpretation by humans as the dimensions corre-
spond to words or word sequences.

Experiments and Results
We experimented with our approach on the MSR Paraphrase
Corpus (Dolan and Brockett 2005). The MSR Paraphrase
Corpus is the largest publicly available annotated paraphrase
corpus which has been used in most of the recent studies that
addressed the problem of paraphrase identification. The cor-
pus consists of 5801 sentence pairs collected from newswire

articles, 3900 of which were labeled as paraphrases by hu-
man annotators. The whole set is divided into a training
subset (4076 sentences of which 2753 are true paraphrases)
which we have used to determine the optimum threshold T ,
and a test subset (1725 pairs of which 1147 are true para-
phrases) that is used to report the performance results.

There are several critiques about MSR corpus. First, MSR
has too much word overlap (spawning form the method used
to collect the data set) and less syntactic diversity. There-
fore, the corpus cannot be used to learn paraphrase syntactic
patterns (Zhang and Patrick 2005; Weeds 2005). Given the
high lexical overlap, a good strategy would be to focus on
differences among the sentences in a pair. It should be noted
that the lexical overlap is recognized by the creators of the
corpus (Dolan and Brockett 2005) which indicate a .70 mea-
sure of overlap (of an unspecified form). The T-F split in
both training and testing is quite similar though (67-33%).
Second, the annotations by humans were made on slightly
modified sentences which are different from the original sen-
tences publicly released. For instance, humans were asked to
ignore all numbers and simply replace them with a generic
token, e.g. MONEY for monetary values, and make judg-
ments accordingly. This discrepancy between what humans
used and what systems take as input complicates the task as
some decisions are counterintuitive which means someone
trying to define a set of meaningful features by inspecting
a subset of examples may be puzzled by some of the ex-
pert decisions. For instance, the pair below was judged as
a paraphrase although the percentages as well as the indices
(Standard & Poor versus Nasdaq) are quite different.

The broader Standard & Poor’s 500 Index .SPX gained 3
points, or 0.39 percent, at 924. The technology-laced Nas-
daq Composite Index < .IXIC > rose 6 points, or 0.41
percent, to 1,498.

Nevertheless, the MSR corpus is the largest available and
most widely used.

We report results using four performance metrics: accu-
racy (percentage of instances correctly predicted out of all
instances), precision (percentage of predicted paraphrases
that are indeed true paraphrases), recall (percentage of true
paraphrases that were predicted as such), and f-measure
(harmonic mean of precision and recall).

Before generating words or sequences of words, several
preprocessing steps were applied. Because there is a large
space of preprocessing possibilities, we present results with
different combinations of preprocessing steps. As results
show, the preprocessing steps can lead to significant vari-
ations of the overall performance of the proposed approach.
The first step in preprocessing is tokenization. We used the
tokenizer from SharpNLP, which is the CSharp version of
the OpenNLP framework.

Next phase in preprocessing is filtering input tokens. First
filtering question is about keeping punctuation or not. Both
choices have advantages and disadvantages. Imagine defin-
ing a bigram kernel. If we ignore punctuation then bigrams
that contain a comma or the end of sentence mark will be ig-
nored. This is a form of generalization resulting in a smaller
number of features/dimensions of the space. One might ar-
gue that bigrams which include punctuation are important.

265

Table 1: Performance results on unigram and bigram Kernels (train and test)
Kernel Class Preprocessing Variants Performance on Train Performance on Test

Punctuation Stemming Acc. Prec. Recall Acc. Prec. Recall
Unigram Kernels
Diss included no 87.41 85.13 98.58 71.30 72.48 91.63

included yes 85.92 83.72 98.26 71.30 72.42 91.80
DissW included no 86.87 84.57 98.55 70.96 72.06 91.98

included yes 85.57 83.28 98.40 71.25 72.19 92.33
DissLex removed yes 87.56 85.79 97.78 73.39 74.75 90.58

included yes 87.24 85.43 97.78 73.51 74.68 91.02
DissWLex removed yes 87.27 85.57 97.60 73.62 74.64 91.37

included yes 86.80 85.01 97.68 73.10 74.10 91.54
Bigram Kernels
Diss removed no 96.39 95.06 99.85 69.80 69.39 97.65

removed yes 96.32 94.96 99.85 69.80 69.47 97.38
DissW removed no 96.34 94.99 99.85 69.68 69.33 97.56

removed yes 96.32 94.96 99.85 69.91 69.53 97.47
DissLex included no 96.57 95.35 99.78 71.07 71.72 93.29

included yes 96.42 95.18 99.75 71.30 71.88 93.37
DissWLex removed no 96.52 95.22 99.85 70.20 71.06 93.11

included yes 96.20 94.89 99.75 71.13 71.79 93.20
Lexical Baseline only
Lex included no 71.96 74.12 89.87 72.64 74.12 90.41

removed no 72.35 75.09 88.38 72.70 74.89 88.67
removed yes 72.74 75.32 88.70 73.51 75.41 89.28
included yes 72.74 75.45 88.41 73.68 75.69 89.01

As an example, let us look at the following two sentences
which are considered non-paraphrases in the MSR Corpus:
A) The daily Hurriyet said the raid aimed to foil a Turkish
plot to kill an unnamed senior Iraqi official in Kirkuk. and B)
The daily Hurriyet said the raid aimed to foil a Turkish plot
to kill an unnamed senior Iraqi Kurdish official in Kirkuk,
but Gul has denied any Turkish plot. We notice that the
second sentence has a comma, which in combination with
the token but is important to decide about paraphrasing. If
we remove the comma, then the resulting bigram Kirkuk-
but will be less important and less likely to appear in other
instances of the corpus than the initial bigram comma-but.

Another filtering choice is regarding the elimination of
stopwords. Stopwords are highly frequent words that oc-
cur in most of the documents/instances in a collection (e.g.
the, in). In some tasks, such as Information Retrieval, they
are not important and therefore dropped. For our task, the
experiments showed that stop words are actually important
and should not be ignored. The third filtering choice is
about stemming or not the words. Stemming is another tech-
nique to reduce the number of dimensions or features when
dealing with texts. However, stemming results in loss of
morphological information and therefore of valuable hints
that could help us distinguish between paraphrases and non-
paraphrases. SVMs classifiers are well known for their abil-
ity to deal with large number of features which means ei-
ther choice is feasible in our case. For example, if we have
the following two short text fragments: Children play. and

Child plays., the difference between child and children is
eliminated when stemming, i.e. reducing words to their base
form. In this work, we experimented with all 8 combinations
of the above preprocessing steps. We report only the best or
more interesting results due to space reasons. In particular,
in all the shown results we retained stop words, because re-
moving them led consistently to worse results.

A Simple, yet Effective, Informed Baseline
During our experiments with various configurations of our
approach, we found out that a simple lexical feature is very
effective to detect paraphrases on the test corpus. For the
MSR corpus, this was noticed before by Zhang and Patrick
(2005) which use a simple four-feature set in combination
with a decision tree learning algorithm. Ours is even simpler
and provides better results.

This simple lexical baseline relies on counting the num-
ber of common word types between sentences of an instance
then normalizing this count by the average length of the two
sentences, which is the arithmetic mean of their lengths. The
resulted normalized score is then used as the only feature in-
put for an SVM classifier with a linear kernel. This feature
basically measures how lexically similar two sentences are.
Given its surprising performance, we decided to use this fea-
ture in combination with our kernel method. In the Results
section we refer to this baseline feature as Lex, and when
combined with the other kernels we append this label to the
names of the other methods.

266

Table 2: Performance on Kernels enhanced with Lexical baseline (10-fold)
Method Preprocessing Variants Unigrams Bigrams

Punctuation Stemming Acc. Prec. Recall Acc. Prec. Recall
DissLex included no 73.45 75.44 89.75 71.78 72.77 92.75

removed yes 74.14 76.08 89.78 71.42 72.34 93.05
included yes 73.76 75.68 89.88 71.61 72.76 92.33

DissWLex included no 73.40 75.29 89.96 71.69 72.72 92.67
removed yes 74.14 76.00 89.96 71.38 72.32 93.02
included yes 73.78 75.58 90.14 71.56 72.69 92.41

Results
After mapping instances into vectors, the vectors are
mapped onto a format accepted by the SVM-Light Library
(Joachims 1999), an implementation of SVM classifier in-
duction algorithm, that we used to asses our kernel. Al-
though working in highly-dimensional spaces, due to the
sparsity of the vectors and efficiency of computing the dot-
product between any two vectors, i.e. the kernel function,
the running and testing time are relatively small, in the order
of seconds for each reported experiment on a medium class
laptop. For all the experiments, the overall running time is
about one hour when 10-fold cross-validation is used.

During preliminary experiments, we tested with some
simple similarity based kernels, which look at n-grams that
are common between the paired sentences, and we also tried
combinations of similarity and dissimilarity kernels. The re-
sults however showed weaker performance for these kernels,
when tested on the MSR Paraphrase corpus. Dissimilarity
kernels were the only ones that performed well, and the per-
formance on the test data was significantly improved when
the lexical feature was added. Apparently this feature seems
to make for a good placeholder of a more complex similarity
based kernel.

Table 1 presents results for unigram and bigram based
kernels, and also for the simple lexical baseline discussed
earlier. A complete evaluation was done for all preprocess-
ing variants, and best results are reported for some of these
variants. The tables report accuracy, precision, and recall
for the positive (paraphrase) instances on both training and
testing data sets. Interestingly, the simple baseline provides
results comparative with the best results obtained with the
dissimilarity kernel on test data. In the tables, Diss refers to
the kernel method with binary weights while DissW refers
to the same method with raw frequency weights. The ta-
bles only report results on preprocessing variants which gave
best performance on the test data. For unigram kernels, we
found out that without the lexical feature, best performance
is achieved when punctuation is included, while with lexical
feature, best performance is given when stemming is used.

For bigram kernels, the number of dimensions is much
larger than for unigram kernels. As a result, the learning ca-
pacity for bigram classifiers is greater. Therefore, as noticed,
these classifier perform very well on the training data, and
not so good on the testing data. One might say that this is
a classic case of over-training the classifier. Using a 10-fold
cross evaluation on all data, might prove or disprove this

Table 3: Performance of Lexical Baseline only (10-fold)
Punctuation Stemming Acc. Prec. Recall
with no 72.14 74.63 88.76
removed no 72.44 74.93 88.73
removed yes 72.81 75.53 88.17
with yes 73.00 75.57 88.45

assumption. Tables 2 presents results using 10-fold cross-
validation for both unigram and bigram based kernels when
enhanced with the lexical baseline feature (LEX). To check
how much do kernels actually contribute to the performance
of the classifiers, it is necessary to check whether the base-
line provides similar results with the kernel-based methods
even if 10-fold cross-validation is used for evaluation (see
Table 3). The results in this case are significantly better
when unigram-based kernel methods are used.

We compare our method in table 4 with results reported
by others on their single model approaches. Best results are
given by the (Wan et al. 2006) method which was repli-
cated in (Das and Smith 2009). The results initially reported
in (Wan et al. 2006) were on incomplete data since sev-
eral hundred instances from both training and testing had
to be removed due to some technical problems encountered
on the syntactic parser that was used. We can observe that
our method provides competitive results in terms of accu-
racy and best precision even when the more reliable 10-fold
cross-validation method is used for evaluation (x10 in the
table). Increasing precision for paraphrase identification on
the MSR corpus seems to be more challenging than obtain-
ing high recall. Extremely high recall, in the upper 90s, can
be easily obtained with very simple lexical overlap methods
enhanced with lexical semantics (see (Mihalcea et al. 2006)
and (Wan et al. 2006)).

Conclusions
We presented in this paper a novel approach to the task of
paraphrase identification. The approach is based on vec-
tors representing dissimilarities between sentences in an in-
stance. A kernel function was defined which was then used
in conjunction with Support Vector Machines to induce a
classifier in a highly-dimensional space. Results on the chal-
lenging Microsoft Research Paraphrase corpus are compet-
itive in terms of accuracy and precision. One advantage of

267

Table 4: Comparing results with related work

Acc. Prec. Recall
Corley & Mihalcea, 2005 71.50 72.30 92.50
Zhang & Patrick, 2005 71.90 74.30 88.20
Zhang & Patrick (baseline) 72.30 78.80 79.80
Mihalcea et al., 2006 70.30 69.60 97.70
Qui et al., 2006 72.00 72.50 93.40
Lintean & Rus, 2009 72.06 74.04 89.28
Fernando & Stevenson, 2008 74.10 75.20 91.30
Das & Smith, 2009 73.86 79.57 86.05
Wan et al. (repl. in Das&Smith) 75.42 76.88 90.14
OUR BASELINE 73.68 75.69 89.01
OUR METHOD (on test) 73.62 74.64 91.37
OUR METHOD (on 10-fold) 74.14 76.08 89.78

our method is its robustness and lack of external resources,
such as lexical semantics from WordNet, when compared to
state-of-the-art approaches. Yet, our method is competitive
and most precise. For future work, we plan to develop more
complex kernels, based on syntax and word-to-word seman-
tic similarity measures, and experiment with other weight-
ing schemes such as entropy or inverse document frequency
(Dumais 1991).

Acknowledgment
This research was supported in part by the Institute for
Education Sciences (R305A100875) and National Science
Foundation (0938239). Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the sponsoring agencies.

References
Collins, M. 1996. A New Statistical Parser Based on Bigram
Lexical Dependencies. In Proceedings of ACL, Santa Cruz.
Corley, C. and Mihalcea, R. 2005. Measuring the semantic
similarity of texts. In Proc. of ACL Workshop on Empirical
Modeling of Semantic Equivalence and Entailment.
Dagan, I., Glickman, O., and Magnini, B. 2005. The Pascal
Recognising Textual Entailment Challenge. In Proceedings
of the Recognizing Textual Entaiment Challenge Workshop.
Das, D., and Smith, N.A. 2009. Paraphrase Identification
as Probabilistic Quasi-Synchronous Recognition In Proc. of
the Joint Conf. of ACL and NLP, Singapore, August 2009.
Dolan, W.B., and Brockett, C. 2005. Automatically con-
structing a corpus of sentential paraphrases. In Proc. of IWP.
Dumais, S. 1991. Improving the retrieval of information
from external sources. Behavior Research Methods, Instru-
ments and Computers, 23,229-236.
Fernando, S., and Stevenson, M. 2008. A Semantic Simi-
larity Approach to Paraphrase Detection. In Proceedings of
the Computational Linguistics UK (CLUK 2008).

Graesser, A.C., Olney, A., Haynes, B.C., and Chipman, P.
2005 AutoTutor: A cognitive system that simulates a tutor
that facilitates learning through mixed-initiative dialogue.
Cognitive Systems: Human Cognitive Models in Systems
Design Erlbaum, Mahwah, NJ.
Ibrahim, A.; Katz, B.; and Lin, J. 2003. Extracting structural
paraphrases from aligned monolingual corpora. In Proceed-
ings of the 2nd Int. Workshop on Paraphrasing (ACL2003).
Joachims, T. 1999. Making large-scale SVM learning practi-
cal. In Advances in Kernel Methods - Support Vector Learn-
ing MIT Press.
Kate, R.J. 2008. A Dependency-based Word Subsequence
Kernel. In Proceedings of EMNLP, 2008.
Lintean, M., and Rus, V. 2009. Paraphrase Identification
Using Weighted Dependencies and Word Semantics. Pro-
ceedings of the FLAIRS-22. Sanibel Island, FL.
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
and Watkins, C. 2002. Text Classification using String Ker-
nels. Journal of Machine Learning Research, 2:419–444.
Mihalcea, R., Corley, C., and Strapparava, C. 2006. Corpus-
based and Knowledge-based Measures of Text Semantic
Similarity. In Proceedings of AAAI-2006. Boston, July.
Pedersen, T., Patwardhan, S., and Michelizzi, J. 2004.
WordNet::Similarity - Measuring the Relatedness of Con-
cepts. In Proceedings of AAAI-04. San Jose, CA.
Rus, V., Nan, X., Shiva, S.G., and Chen, Y. 2009. Clustering
of Defect Reports Using Graph Partitioning Algorithms. In
Proceedings of SEKE’2009. Boston, MA, July, p. 442–445.
Rus, V., Lintean, M., Graesser, A.C., McNamara, D.S. 2009.
Assessing Student Paraphrases Using Lexical Semantics and
Word Weighting In Proceedings of AIED. Brighton, UK.
Qiu, L., Kan, M. Y., and Chua, T. S. 2006. Paraphrase
recognition via dissimilarity significance classification. In
Proceedings of EMNLP.
Shawe-Taylor, J., and Cristianini, N. 2000. Support Vector
Machines and other kernel-based learning methods. Cam-
bridge University Press.
Wan, S., Dras, M., Dale, M., and Paris, C. 2006. Using
dependency-based features to take the para-farce out of para-
phrase In Proceedings of ALTW.
Weeds, J., Weir, D., and Keller, B. 2005. The distributional
similarity of sub-parses. In Proceedings of the ACL Work-
shop on Empirical Modeling of Semantic Equivalence and
Entailment. Ann Arbor, MI, June, ACL, p. 7–12.
Wu, D. 2005. Recognizing paraphrases and textual entail-
ment using inversion transduction grammars. In Proc. of the
ACL Workshop on Empirical Modeling of Semantic Equiva-
lence and Entailment.
Zanzotto, F. M., Pannacchiotti, M., and Moschitti, A. 2009.
A machine learning approach to textual entailnment recog-
nition. Natural Language Engineering, 15(4):551–582.
Zhang, Y., and Patrick, J. 2005. Paraphrase identification by
text canonicalization. In Proceedings of ALTW,160–166.

268

