Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Supplemental Case Acquisition Using Mixed-Initiative Control

Michael W. Floyd and Babak Esfandiari
Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, Ontario, Canada

Abstract

Learning by observation allows a software agent to
learn by watching an expert perform a task. This trans-
fers the burden of training from the expert, who would
traditionally need to program the agent, to the agent
itself. Most existing approaches to learning by obser-
vation perform their observation in a purely passive
manner. We propose a case-based reasoning agent that
is able to observe passively but can also use mixed-
initiative control to request assistance from the expert
for difficult input problems. Our agent uses mixed-
initiative case acquisition in the game of Tetris. We
show that the agent is able to obtain cases it would not
have been able to with passive observation alone, is able
to improve its performance and places less burden on
the expert.

1 Introduction

When designing a software agent, the duty of training
the agent traditionally falls upon an expert who acts as
a teacher. However, transferring the expert’s knowledge
to a software agent can be a difficult and time-consuming
task. This is especially true if the expert has difficulty mod-
elling its knowledge, possibly if they lack computer pro-
gramming skills, or they are not fully aware of all details
related to how they perform a task. In order to overcome
this knowledge-transfer burden, case-based reasoning has
seen an interest in approaches that learn by observation
(Ontafién et al. 2007; Romdhane and Lamontagne 2008;
Floyd, Esfandiari, and Lam 2008; Rubin and Watson 2010;
Gillespie et al. 2010). The agent learns by watching the
expert perform a task and, when faced with the same task,
aims to behave in a similar manner. This shifts the task of
knowledge modelling from the expert to the agent.

Instead of making use of a case base that is completely au-
thored by an expert, case-based reasoning systems that learn
by observation automate (to varying degrees) case acquisi-
tion. The agent can observe the current state of the envi-
ronment (the problem) along with how the expert reacts (the
solution) and create a case. Automatic case acquisition is
highly desirable because it greatly reduces the cost of gener-
ating each case. However, the downside of acquiring cases
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automatically is that there is no control over what cases will
be acquired.

Using passive observation (Floyd, Esfandiari, and Lam
2008), where the agent observes the expert without directly
interacting with it, the case generation process is completely
dependant on the behaviour of the expert and the state of the
environment. If the expert never performs certain actions
or encounters certain environment states it will be impossi-
ble for the agent to obtain cases related to those actions and
states. To overcome this limitation, active case acquisition
(Floyd and Esfandiari 2009) has been used to present the ex-
pert with problems the agent wishes to have solved. Instead
of the expert interacting directly with the environment, the
agent simulates the environment so a set of desired environ-
ment states can be presented to the expert. While active case
acquisition allows the agent more control over what cases
can be generated, its primary limitation is that the agent may
need to provide the expert with a series of input problems in
order to get a solution to one particular problem (Floyd and
Esfandiari 2009).

To overcome the limitations of both passive and active
case acquisition we propose using mixed-initiative control.
In such an approach, the agent is controlled by the case-
based reasoning (CBR) system unless it is unable to retrieve
a solution to an input problem. In those situations the CBR
system defers to the expert and can then observe the expert
solving the problem and add the resulting case to the case
base. This allows for the majority of the case acquisition to
be done passively with small sessions of tutoring occurring
afterwards.

This paper aims to demonstrate how mixed-initiative con-
trol can be used to guide the case acquisition process in order
to add cases from poorly represented regions of the problem
space. Section 2 describes our approach to case acquisition
using mixed-initiative control and an experimental analysis,
in the domain of Tetris, is presented in Section 3. Related
work, in the areas of mixed-initiative case-based reasoning
and case acquisition, is discussed in Section 4. Finally, con-
cluding remarks and areas of future work are presented in
Section 5.

2 Mixed-Initiative Case Acquisition

Mixed-initiative systems allow for the control of a single en-
tity, in our case a software agent or robot, by several con-



trollers concurrently. At any time ¢, only one of the n con-
trollers has initiative over the agent and may control the ac-
tions the agent performs. In our discussion we will limit the
number of controllers sharing initiative to two': the case-
based reasoning system and the expert.

Since the motivation for using a mixed-initiative approach
is for case generation, under most circumstances the case-
based reasoning system will control the agent. By giving
the majority of control to the CBR system there will be two
primary benefits. Firstly, the CBR system will handle the
majority of the problem solving. This minimizes the amount
of work the expert must perform since they will be passive
most of the time. Secondly, and more importantly, the CBR
system will be attempting to behave in a similar manner to
the expert but will likely make errors that the expert would
never have made. For example, if the expert played a game
in an optimum or near-optimum way, it might never per-
form actions that put it in a disadvantageous position (and
the CBR system would never observe cases related to those
disadvantageous positions). These errors in the ability of
the CBR system to replicate the expert’s behaviour can ac-
tually be advantageous because it allows for the exploration
of previously inaccessible areas, due to the expert’s optimum
behaviour, of the problem space.

2.1 Agent Control

Since the agent can only be controlled by either the
case-based reasoning system or the expert at a particular
moment in time, the mechanisms for transferring control
are important. Each controller has two control actions: they
can seize control of the agent or cede control to another
controller. Therefore, the current controller may either cede
or do nothing and the other may either seize or do nothing.
The following details the situations in which the controllers
will seize or cede control:

Expert

e Seize: The expert may seize control at any time (although
this will likely occur rarely). Seizing would generally be
performed if the expert noticed the CBR system to be per-
forming poorly and wanted to provide unsolicited assis-
tance.

o Cede: The expert will automatically cede control after
controlling the agent for a single turn. This is done to
give the majority of the control to the CBR system.

Case-based Reasoning System

e Seize: The CBR system will never attempt to seize con-
trol. Since the expert will automatically cede control back
to the CBR system there is no need to seize control.

e Cede: The CBR system will cede control to the expert
when it determines it is unable to successfully solve the
input problem. The system could also cede if it required
more information, however our implementation is cur-
rently only failure-driven.

! Although the work could easily be extended to include multi-
ple experts.
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The case-based reasoning system determines which prob-
lems it is unable to solve based on the similarity of a problem
to the cases in its case base. The input problem will be com-
pared to each case in the CBR system’s case base. If none of
the cases in the case base have a similarity to the input prob-
lem greater than a threshold, 7, the CBR system will cede
control of the agent to the expert (otherwise it will solve the
problem itself). A flowchart of the process is shown in Fig-
ure 1. By setting an appropriate similarity threshold it is
possible to control how often the CBR system will request
help from the expert.

Input <
Received

Seizes
Expert < \/
Solves | ¢
il Cede To System
Expert Solves
\
Cede To
System

Figure 1: Flowchart of how initiative is seized and ceded by
the expert and the system.

2.2 Case Acquisition

When the case-based reasoning system has ceded control (or
the expert has seized control) of the agent it will then ob-
serve the expert and create a new case from the observation.
During observation the CBR system will not have complete
knowledge of the expert’s reasoning process but must in-
stead rely of the inputs to the expert and outputs from the
expert. When controlling a software agent, the inputs to the
expert will be the agent’s sensory inputs, S and the expert
will output the actions, A, it wishes the agent to perform.
Each case, C), that is created by observation will contain the
input problem (the sensory input S) and solution (the per-
formed actions A):

C={5,4} (1)

While this approach to case generation is limited in that it
does not contain knowledge related of the expert’s inter-
nal reasoning or goals, it is advantageous because it can be
formed completely autonomously without any annotation by
the expert. The expert is only required to demonstrate their
behaviour and does not need to model or describe it in any
way. The burden of case acquisition falls entirely on the



case-based reasoning system and requires no manual author-
ing from the expert.

We have described how the CBR system cedes control of
the agent to the expert during run-time but the initial learning
by observation can also be thought of in a mixed-initiative
context. During the initial training the system essentially
sets the similarity threshold arbitrarily high (7 = o0) such
that it is constantly allowing the expert to solve the input
problems. The CBR system has a limited case base so it is
focused on letting the expert solve problems so that it can
observe and attain more cases. As the case base size grows,
and the CBR system becomes better at solving problems on
its own, the similarity threshold can decrease (either to a
constant value or at a specific rate over time) to allow the
CBR system to behave with more autonomy.

3 Experimental Results

Our experiments will look to demonstrate the benefits of
mixed-initiative control for case acquisition. We will use the
game of Tetris as the domain and show how mixed-initiative
case acquisition can generate cases that can not be obtained
in a passive manner. Tetris was chosen because it has a
large problem space (approximately 2216 using our repre-
sentation) but the player has a significant amount of control
over what problems are encountered based on how they play.

3.1 Experimental Domain

In our experiments the case-based reasoning system and the
expert will share control of an agent that plays the game of
Tetris. During a game of Tetris, a player must slide and ro-
tate descending game pieces onto the rectangular game re-
gion (Figure 2). Each game piece is composed of four square
blocks, arranged in various configurations, that stack on one
another as they are placed in the game region. The goal
of the player is to fill entire rows of the game region with
blocks, making the row disappear, in order to keep blocks
from being stacked to the top of the game region.

Use Al

Figure 2: Game of Tetris

The sensory inputs, S7esris, received by the player during
a Tetris game have two components: the game region and
the game piece. The game region, which has 20 rows and 10
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columns, is represented by a 20 x 10 matrix, R. Similarly,
the game piece is represented by a 4 x 4 matrix, P. Each of
these matrices contain binary values to represent if a cell is
empty (a 0 value) or not (a 1 value).

STet'r'is = {R7 P} (2)

The similarity between two Tetris sensory inputs, A and
B, is calculated as follows:

sim(A, B) = %[sim(A.R, B.R) + sim(A.P,B.P)] (3)

And the similarity between two matrices, M; and Moy, is
calculated using their normalized Hamming distance:

sim(My, Ms) = 1 — normHamming(My, M) (4)

The normalized Hamming distance was chosen for its gen-
erality in comparing two matrices rather than any benefit
for comparing matrices that represent a Tetris board and
piece. We looked to create a similarity function that could be
used in a variety of domains without hardcoding any domain
knowledge about the Tetris game or goals?. It should also
be noted that we arbitrarily chose to give both the game re-
gion and the piece equal weighting in the similarity function.
However, this can easily be changed to give more influence
to one or the other by adding weights.

The actions of the player, Arcyis, also have two com-
ponents: sliding and rotating. The player is able to slide
the piece horizontally by a certain number of squares (with
positive values representing sliding right and negative left),
slide, and rotate the piece 90 degrees clockwise a certain
number of times, rotate. An action with O slides and O rota-
tions would represent a no-op.

Aretris = {slides, rotate}

&)

There are other methods for representing and comparing
Tetris cases, like only examining subregions of the game
region, that can lead to better game playing performance
(Romdhane and Lamontagne 2008). We have chosen to use
our representation because it keeps the sensory information
in the same form as it is received by the agent. No infor-
mation is added, removed or transformed. This avoids in-
troducing any knowledge we have about Tetris strategy in
order to make the case-based reasoning system as domain-
independent as possible (Floyd and Esfandiari 2010).

3.2 Results

The expert that is observed is a Tetris-playing software
agent. The expert plays by placing each piece so as to
minimize the resulting height of the stacked pieces and the
number of holes in rows. Two case bases, each containing
100,000 cases, were generated by observing the expert.
Both case bases use the same set of 90, 000 initial cases,
called the seed cases, that were generated passively. The

*Future work will examine how we can improve performance
by learning a similarity function that is better suited for Tetris.



first case base, which we will call the passive case base, also
contains an additional 10,000 cases that were generated
through passive observation. The second case base, called
the mixed-initiative case base, contains 10,000 additional
cases were generated using our mixed-initiative approach
(with 7 = 0.8). The case-based reasoning system we use
only makes use of the case data when reasoning and has no
encoding of the rules or goals of Tetris.

Rarity of Cases

The first experiments looked to examine whether mixed-
initiative case acquisition is able to generate cases that are
not obtainable through a purely passive approach. In the
mixed-initiative case base 10, 000 cases were generated us-
ing our mixed-initiative approach. It is possible that these
cases were dissimilar to the 90,000 seed cases but would
have occurred had more cases been generated passively.

To test this a much larger case base of 2 million cases was
generated passively. Each of the 10, 000 passively generated
and 10, 000 mixed-initiative generated cases were compared
to the larger case base to find their most similar case. Of the
10, 000 passive cases approximately 99% had a case in the
larger case base with a similarity greater than 0.85 and ap-
proximately 44% had a similarity over 0.95 (the mean sim-
ilarity was 0.93). Comparatively only 28% of the mixed-
initiative cases had a case in the larger case base with a sim-
ilarity greater than 0.85 and none had a similarity greater
than 0.95 (the mean similarity was 0.82).

What these results demonstrate is that the vast majority
of the cases generated using the mixed-initiative approach
would not have been obtained even if a much larger case
base was generated. This confirms our hypothesis that there
are certain input problems that would not be observed in a
purely passive manner. The errors made by the CBR system
lead to unexplored areas of the problem space that can then
be solved by the expert.

Game Performance

Having a case base with a more diverse collection of cases
may be desirable but we also look to show it is benefi-
cial for Tetris-playing performance. In order to examine
this we measured the average length, in number of game
pieces played, of a Tetris game. A longer game length im-
plies the agent was better able to manage the height of the
stacked blocks by using strategic piece placement or com-
pleting lines.

The CBR system used both case bases, the passive case
base and the mixed-initiative case base, to play 350 games of
Tetris. During these games the CBR system was not able to
receive assistance from the expert and reasoned solely with
the case base it was using. Table 1 shows the mean num-
ber of pieces played for each case base (and the 99% con-
fidence interval). We can see that the mixed-initiative case
base results in a significant increase (using a paired t-test
with o < 0.001) in the number of pieces played per game.

The increased number of pieces per game, while not a
large increase, does show that using mixed-initiative case
generation allows the case-based reasoning system to play
the game of Tetris better. This is likely because the CBR
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system is better able to recover from errors it makes. Since
the expert has solved problems that represent the game state
after these errors, the CBR system will posses cases that can
help it during these situations.

Mixed-Initiative
27.80 (+/- 0.81)

Passive
25.90 (+/- 0.67)

pieces

Table 1: Mean pieces played using each case base.

Case Generation Cost
One other area of interest is related to the number of prob-
lems, during mixed-initiative control, that the case-based
reasoning system was able to solve itself. When generat-
ing the mixed-initiative case base the CBR system solved
approximately 43,000 problems without the assistance of
the expert. Since it required the expert’s assistance for
10, 000 problems (the portion of the case base generated us-
ing mixed-initiative control), the CBR system was able to
solve 81% of the problems itself.

This is beneficial for two primary reasons. First, less of
a burden is placed on the expert. The expert only needed
to solve problems that the CBR system was unable to solve.
Even if the initial case base was empty, and all cases were
generated in a mixed-initiative manner, the expert would still
only be required a portion of the time since the system would
be able to solve more problems as more cases were added.
Secondly, had the CBR system added the first 10, 000 cases
it observed it likely would have added many cases that were
highly similar to cases it already had in its case base.

4 Related Work

The most similar work to our own is that of Grollman and
Jenkins where they use mixed-initiative control to teach
a robot soccer-related behaviours (Grollman and Jenkins
2007a). The robot can be controlled by both an autonomous
system or a human controller. Under most circumstances the
system will control the robot, unless the human chooses to
take control. Their primary difference, compared to our own
work, is that the autonomous system has no way of identify-
ing that it needs assistance. Instead, the user must watch the
robot to see when it is making mistakes and manually take
control. Secondly, they provide background information, in
the form of supplemental information about the task cur-
rently being demonstrated (Grollman and Jenkins 2007b),
rather than demonstrating exclusively with the sensory in-
puts and performed actions.

Learning interface agents (Maes and Kozierok 1993) are
also similar to our work. An agent acts as a user’s per-
sonal assistant, for tasks like sorting e-mail messages, and
learns by observing the user. The agent stores instance cases,
containing information about the email and where the user
moved it, and then compares new e-mail messages to these
instances in order to determine where to recommend they
should be moved. This work differs from our own in that it
is designed to be assistive to a user rather than replace a user.
Many of the features that are used are related to how the user
interacts with the e-mail, like reading it or replying to it, so



the agent would be unable to operate without the user’s in-
volvement. Also, since the user is in control of actions the
agent only passively observes and has no control over which
situations are observed. This is in contrast to our approach
which allows the agent to influence which input problems
the expert solves.

Automatically generating cases is central to much of the
work on using CBR to learn by observation. This includes
generating cases while observing an agent playing the game
of Tetris (Romdhane and Lamontagne 2008), building case-
based planning libraries from traces of real-time strategy
games (Ontafion et al. 2007) and extracting cases from logs
of chess (Flinter and Keane 1995) or poker (Rubin and Wat-
son 2010) games. The difference between these works and
our own is that they all generate cases passively and do not
attempt to guide the case acquisition process through iden-
tification of poorly covered regions of the problem space.
Instead of observing an expert, Powell et al. (Powell, Hauff,
and Hastings 2005) randomly generate novel cases and then
evaluate them using reinforcement learning.

Passive case acquisition has also be used in domains
that require extracting information from text. Yang et al.
(Yang, Farley, and Orchard 2008) use data from two sources,
human authored maintenance reports and computer gener-
ated fault messages, to create cases in an aviation mainte-
nance domain. Similarly, Asiimwe et al. (Asiimwe et al.
2007) extract information from reports to create cases re-
lated to determining home upgrades for people with disabil-
ities. More active approaches to identifying poorly covered
regions of the problem space have used measures of com-
plexity (Massie, Craw, and Wiratunga 2005) and coverage
(McSherry 2000). These approaches analyze the case base
offline, rather than while the CBR system is solving prob-
lems, and therefore requires some prior knowledge about the
problem space.

A significant amount of mixed-initiative case-based rea-
soning work has been done in the area of query formulation
(Gupta and Aha 2003). A human user is assisted in for-
mulating a query by a system that determines the most use-
ful attribute constraints to add to the query (Bridge 2002)
or gathers query information autonomously (Carrick et al.
1999). McSherry and Aha (McSherry and Aha 2007) de-
scribe a recommender system where the user provides cri-
tiques of recommendations in order to add constraints to
their search. Generally, in situations where the search has
become over-constrained the system will determine which
constraints to relax. However they propose mixed-initiative
constraint relaxation where the user can propose which con-
straints should be relaxed. These systems tend to operate
in a conversational manner with the CBR system posing
questions and the user providing responses. This results in
the initiative being transferred after each interaction whereas
our approach allows initiative to be transferred at any time.

Mixed-initiative case-based planning has been used to in-
tegrate two stand-alone planning systems (Veloso, Mulve-
hill, and Cox 1997). The user can search and manually mod-
ify plans using one system, ForMAT, while the other system,
Prodigy/Analogy, performs automated plan adaptation and
recommends modifications for the user to make.
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5 Conclusions and Future Work

In this paper we have described an approach to case acqui-
sition that uses mixed-initiative control to allow for supple-
mental assistance from an expert. Unlike passive observa-
tion, which gives the agent no control over the observed in-
put problems, mixed-initiative observation allows the agent
to direct the input problems toward ones that it wishes to
have solved by the expert (this can either be intentional or
due to errors made by the agent).

We have shown, in the game of Tetris, that there are cer-
tain cases that can not be observed in a purely passive man-
ner and that this is especially true if the expert behaves in
an optimum or near-optimum way. This means there are
regions of the problem space that are not represented in a
passively generated case base. Using our mixed-initiative
case acquisition method a case base was generated that al-
lowed our CBR agent to play Tetris better than when using
a passively obtained case-base.

The primary limitation of our approach is that it requires a
cooperative expert. The expert must be willing to take con-
trol of the agent when requested. If the expert does not know
it is being observed or is unwilling to assist then a mixed-
initiative approach would not be possible. However, if the
expert is willing to help then our mixed-initiative approach
helps reduce the burden on the expert. The case-based rea-
soning system will only ask the expert to solve problems that
it is unable to solve itself so the expert will not need to solve
numerous highly similar problems.

Our future work will look to optimize the parameters
used during mixed-initiative case acquisition (like the sim-
ilarity threshold and percentage of cases to generate using
mixed-initiative control). Even without optimizing the pa-
rameters we were still able to demonstrate the benefit of
mixed-initiative case acquisition and obtain performance re-
sults that are similar to other Tetris-playing CBR systems
that use a global view of the Tetris board (Romdhane and
Lamontagne 2008). We have not directly compared our re-
sults to those of Romdhane and Lamontagne because our
goal was not to optimize Tetris playing but instead to demon-
strate an approach to case acquisition. Future work will also
look to learn human-like strategies and case representations
using only observed cases and without having to provide any
explicit domain knowledge.
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