
Case Acquisition Strategies for Case-Based
Reasoning in Real-Time Strategy Games

Santiago Ontañón
Computer Science Department

Drexel University
Philadelphia, PA, USA

santi@cs.drexel.edu

Abstract

Real-time Strategy (RTS) games are complex domains
which are a significant challenge to both human and ar-
tificial intelligence (AI). For that reason, and although
many AI approaches have been proposed for the RTS
game AI problem, the AI of all commercial RTS games
is scripted and offers a very static behavior subject to
exploits. In this paper, we will focus on a case-based
reasoning (CBR) approach to this problem, and con-
centrate on the process of case-acquisition. Specifically,
we will describe 7 different techniques to automati-
cally acquire plans by observing human demonstrations
and compare their performance when using them in the
Darmok 2 system in the context of an RTS game.

Introduction
Real-time Strategy (RTS) games are complex domains, of-
fering a significant challenge to both human and artificial
intelligence (AI). Designing AI techniques that can play
RTS games is a challenging problem because of several
reasons: RTS games have huge decision and state spaces,
they are non-deterministic, partially observable and real time
(Ontañón et al. 2010; Aha, Molineaux, and Ponsen 2005).
Moreover, RTS games requires spatial and temporal reason-
ing, resource management, adversarial planning, uncertainty
management and opponent modeling (Buro 2003).

Many approaches to deal with the problem of RTS game
AI have been proposed, spurred by competitions like the
AIIDE1 or CIG Starcraft AI competitions2 (next section
provides a quick overview of the different challenges RTS
games pose, and how have they been approached from an
AI perspective). In this paper, we will focus on a case-based
reasoning (CBR) approach to this problem.

Specifically, we will focus on the problem of where do
cases come from in CBR approaches to RTS game AI, and
approach it from a learning from demonstration perspective.
Learning from demonstration has been used before in the
context of CBR for case acquisition (Ontañón et al. 2010;
Weber and Mateas 2009; Floyd, Esfandiari, and Lam 2008)

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://skatgame.net/mburo/sc2011/
2http://ls11-www.cs.uni-dortmund.de/rts-competition/

starcraft-cig2011

with promising results. The main contribution of this pa-
per is a description and comparison of 7 different case ac-
quisition strategies in the context of RTS games, showing
their strengths and weaknesses. The case acquisition tech-
niques have been incorporated into the Darmok 2 (Ontañón
et al. 2009) system, and evaluated in a RTS game, called S3,
specifically developed for experimentation, but still includ-
ing all the complexity of RTS games.

Background
As mentioned before, RTS games are a very challenging do-
main from the point of view of AI, mainly due to their huge
state and decision space. In comparison, an average posi-
tion in the game of Chess has in the order of 20 possible
moves; in a standard RTS game the total number of pos-
sible moves is in the order of thousands or even millions.
The size of the state and decision space and the fact that
the games are real-time (rather than turn-based), non deter-
ministic and partially observable, makes standard game tree
search approaches non applicable (although they have been
tried (Chung, Buro, and Schaeffer 2005)).

The most common approach is to hard-code human strate-
gies. For example, the work of McCoy and Mateas (McCoy
and Mateas 2008), or many of the entries to the latest edi-
tions of the Starcraft AI competition use this strategy. The
main difficulties here is that humans combine a collection
of different strategies at many different levels of abstraction,
and it is not obvious how to make all of those strategies in-
teract in a unified integrated architecture.

Given the complexity of hard-coding such strategies, au-
tomatic learning techniques have been proposed, however,
they cannot cope with the complexity of the full game,
and have to be applied to specific sub-tasks in the game,
or to an abstracted version of the game. For example, Aha
et al. (Aha, Molineaux, and Ponsen 2005) use case-based
reasoning to learn to select between a repertoire of prede-
fined strategies in different game situations. Another ap-
proach is that of reinforcement learning (Marthi et al. 2005;
Sharma et al. 2007), although it only works for small in-
stances of RTS games with a very limited number of units
(typically less than 10).

Learning from demonstration approaches have the advan-
tage that they do not have to explore the whole state space of
the game. For example, Könik and Laird (Könik and Laird

335

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

2006) study how to learn goal-subgoal decompositions by
learning from human demonstrations. Weber and Mateas
(Weber and Mateas 2009) use learning from demonstration
to predict the opponent strategy.

The work presented in this paper is closely related to the
work of Floyd et al. (Floyd, Esfandiari, and Lam 2008) and
Ontañón et al. (Ontañón et al. 2010). Both approaches use
learning from demonstration as a case-acquisition strategy
inside of a case-based reasoning system that uses the learned
cases to play the game.

Learning from Demonstration, called sometimes
“learning from observation” or “apprenticeship learning”
(Ontañón, Montaña, and Gonzalez 2011), has been widely
studied in robotics and offers an alternative to manual
programming. Human demonstrations have also received
some attention to speed-up reinforcement learning (Schaal
1996), and as a way of automatically acquiring planning
knowledge (Hogg, Muñoz-Avila, and Kuter 2008). A recent
overview of the state of the art can be found in (Argall et al.
2009). For the purposes of this paper it suffices to say that
learning from demonstration in the context of case-based
reasoning systems involves two steps: 1) acquiring cases
from expert demonstrations, and 2) reusing those cases to
actually play the game. This paper focuses on the first step.

Darmok 2
Darmok 2 (D2) (Ontañón et al. 2009) is a case-based reason-
ing system designed to play RTS games. D2 implements the
on-line case-based planning cycle (OLCBP), a high-level
framework to develop case-based planning systems that op-
erate on real-time environments (Ontañón et al. 2010). The
main focus of D2 is to explore learning from human demon-
strations, and the use of adversarial planning techniques.
The most important characteristics of D2 are:

In order to play an RTS game, D2 is given the high level
task T of winning the game. Then, when the game starts,
it retrieves cases looking for plans to execute in the current
game state in order to achieve T . The retrieved plans might
have to be adapted using transformational adaptation tech-
niques. Moreover, the retrieved plans can be either directly
executable, or might decompose T in some sub-tasks, for
which further retrieval operations need to be performed. D2
tracks the execution status of the plan in execution, and if
any part of the plan fails, it retrieves further cases to replace
the failed part.

For a more in-depth description of D2, the reader is re-
ferred to (Ontañón et al. 2009; Ontañón et al. 2010). In this
paper, we will mainly focus on strategies to automatically
acquire cases from expert demonstrations. Next section elab-
orates on the notion of demonstrations and cases, before we
describe the case acquisition strategies.

Demonstrations and Cases
An expert demonstration consists of a list of triples
[〈t1, S1, a1〉, ..., 〈t1, Sn, an〉], where each triple contains a
time stamp ti game state Si and a an action ai. The triples
represent the evolution of the game and the actions executed
by the expert at different times of the game. The action ai is
the action executed by the expert at time ti.

Actions in RTS games are durative, have non-
deterministic effects, might or might not succeed, and
might also have complex interactions between them. For ex-
ample, the probability of an action to succeed might depend
on which actions are executed immediately afterwards.
An example of this is the attack action: the probability of
success when sending one unit to attack depends on whether
we issue more attack actions afterwards (back-up units).

Actions in D2 have a complex representation to allow the
system to reason about their complex interactions. But for
the purposes of case acquisition, we only need to focus on
the following 3 elements:

• An action specifies a name and a list of Parameters, e.g.:
Build(U0, Barracks, (23, 18)). Which represents an ac-
tion commanding unit U0 to build a building of type
Barracks at position (23, 18).

• Preconditions, which must be satisfied for an action to
start execution. For example, the previous action has 5
preconditions in the domain used for our experiments:

1. entity U0 must exist,
2. position (23, 18) must be free,
3. a path exists from the current position of P0 to (23, 18),
4. the player must have enough gold to build Barracks,
5. the player must have enough wood to build Barracks.

• Success conditions. If the success condition of an action
succeeds, we know the action completed successfully. Ac-
tions might fail, so there is no guarantee of success condi-
tions to be met after an action starts. Also, actions might
have additional side-effects that are hard to predict (like
peasants opening new paths after chopping trees in a map,
that radically change the strategy to follow in the game).
In the previous example, the success conditions of the ac-
tion are that there will be a building of type Barracks at
position (23, 18). Although not equivalent, in the rest of
this paper, we will consider these success conditions to be
the postconditions in traditional planning.

In our framework, in addition to the demonstrations, the
learning agent has access to a definition of the task T to
perform. This definition is in the form of a reward func-
tion that, given a state S, assigns a reward T (S) ∈ [0, 1].
T (S) = 1 when the task is fully achieved in state S and
T (S) = 0 when the task is completely unfinished. Addition-
ally, for complex tasks, the learning agent might have access
to a collection of sub-task definitions T1, ..., Tk, defined by
their respective reward functions. This set of subtasks can
be used by the learning agent to understand and structure
the demonstrations provided by the expert. In a way, this set
of tasks is equivalent to the list of tasks in the HTN plan-
ning framework. Many of the learning techniques presented
in this paper assume the existence of such task definitions,
but we also examine learning techniques that do not assume
such task definitions exist.

We will represent a case as a triple: 〈T, S, P 〉, where T is
a task, S is a game state, and P is a plan. A case represents
the fact that the plan P was demonstrated by the expert as
the right thing to do to achieve goal T at game state S. Here,

336

 0 S1 Harvest(U2,(0,16))
 5 S2 Train(U4,”peasant”)
 420 S3 Harvest(U3,(17,23))
 430 S4 Train(U4,”peasant”)
 856 S5 Build(U5,”LumberMill”,(4,23))
1381 S6 Build(U5,”Barracks”,(8,22))
2000 S7 Train(U6,”archer”)
2009 S8 Build(U5,”tower”)
2615 S9 Train(U6,”archer”)
3226 S10 Attack(U7,EU1)
3230 S11 Attack(U8,EU2)

Expert Demonstration Monolithic Sequential LearningReactive Learning

Task WinGame
Game State S1
Plan Harvest(U2 (0 16))

case 1

Task WinGame
Game State S11
Plan Attack(U8,EU2)

case 11

Task WinGame
Game State S1
Plan Harvest(U2,(0,16))
 Train(U4,”peasant”)
 Harvest(U3,(17,23))
 ...
 Train(U6,”archer”)
 Attack(U7,EU1)
 Attack(U8,EU2)

case 1

Figure 1: Comparison between a reactive case acquisition strategy and a sequential one.

T is just a symbol that identifies the task. In traditional CBR
terms, one can see the combination of task and game state to
be the problem, and the plan to be the solution of the case.

The solution of a case (the plan) can either be a single ac-
tion or a complex plan. In order to represent complex plans,
we will use the formalism of petri nets. Petri nets (Murata
1989) are very expressive can can represent plans with con-
ditionals, loops or parallel sequences of actions.

Case Acquisition from Demonstration
In this section we will present 7 different techniques for
learning cases from expert demonstrations. The 7 strate-
gies are based on 4 basic ideas: learning sequences of
actions rather than isolated actions (sequential learning),
hierarchically decomposing the expert demonstration into
tasks and subtasks (hierarchical learning), analyzing the
preconditions-postconditions of actions (dependency graph
analysis) and analyzing the timespan of executed actions
(timespan analysis).

Reactive Learning
An expert demonstration is a sequence of triplets that record
which actions did the expert execute in different game states
at different times. Given an expert trace, the reactive learn-
ing strategy (RL) learns one case per each entry in the expert
trace. Thus, from an expert trace consisting of n entries:

[〈t1, S1, a1〉, ..., 〈tn, Sn, an〉]
it will learn the following n cases:

{〈WinGame, S1, a1〉, ..., 〈WinGame, Sn, an〉}
This case acquisition strategy was introduced by Floyd et

al. (Floyd, Esfandiari, and Lam 2008). The left hand side of
Figure 1 shows an example of its execution with an expert
trace consisting of 11 actions.

Monolithic Sequential Learning
As we will empirically show in the empirical evaluation, one
of the issues of the previous strategy is that it’s purely reac-
tive and the resulting CBR system has problems properly
sequencing actions in a way that their preconditions are sat-
isfied. Notice that this is expected, since the one piece of
information that is lost in the reactive learning strategy is
precisely the order or the actions.

The monolithic sequential learning strategy (SML) takes
the completely opposite approach,given an expert demon-
stration with n actions, it learns a single case:

〈WinGame, S1, sequence(a1, ..., an)〉
where sequence(a1, ..., an) represents a sequential plan
where all the actions are executed exactly in the same order
as the expert executed them. Thus, this strategy learns a sin-
gle case per demonstration. Figure 1 compares this learning
strategy (right) with the reactive learning strategy (left).

Hierarchical Sequential Learning
The monolithic sequential learning strategy can capture the
order in which actions were executed by the expert, but it has
a major drawback that can be illustrated with the following
example. Imagine that at the beginning of a game, a case is
retrieved and fails after executing, say, 20 actions. Now, the
CBR system retrieves a new case, but the new plan will con-
tain another sequence of actions to play the complete game
from the beginning, rather than from the current situation.

To prevent that from happening, the hierarchical sequen-
tial learning strategy (SHL) exploits the information avail-
able to the system in the form of subtasks T1, ..., Tk and tried
to learn cases with plans to achieve each one of those tasks
separately. It also tries to learn which tasks are subtasks of
others. In this way, if a plan fails during execution, only a
subset of the complete plan to win the game needs to be
restarted. For example, the system might divide the trace in
3 parts: build base, build army, and attack. If during execu-
tion, the attack plan fails, another case for attack can be re-
trieved, and the actions to build the base and build the army
do not have to be repeated.

In order to achieve that goal, this strategy uses the idea
of a task matrix (Ontañón et al. 2009). A task matrix M for
a given demonstration D, as illustrated in Table 1, contains
one row per entry in the expert demonstration, and one col-
umn per task defined in the domain at hand. For example,
in the RTS game used in our evaluation, we have 13 tasks
defined (build a town hall, build a barracks, build a tower,
train a footman, etc.), thus the task matrix has 13 columns.
The matrix is binary and Mi,j = 1 if the task Tj is satisfied
in the game state Si, otherwise Mi,j = 0.

From each sequence of zeroes in a column that ends in a
one, a plan can be generated. For example, five plans could

337

Demonstration T1 T2 T3 T4 T5

〈t1, S1, a1〉 0 0 0 0 0
〈t2, S2, a2〉 0 0 0 0 0
〈t3, S3, a3〉 0 0 0 0 0
〈t4, S4, a4〉 0 0 0 0 0
〈t5, S5, a5〉 0 0 0 0 0
〈t6, S6, a6〉 0 0 0 1 0
〈t7, S7, a7〉 0 0 1 1 0
〈t8, S8, a8〉 0 1 1 1 0
〈t9, S9, a9〉 0 1 1 1 1
〈t10, S10, a10〉 0 1 1 1 1
〈t11, S11, a11〉 0 1 1 1 1
〈t12, S12, ∅〉 1 1 1 1 1

Table 1: Task matrix for a set of five tasks
{T1, T2, T3, T4, T5} and for a small trace consisting of
only 12 entries (corresponding to the actions shown in
Figure 3).

�T3, [A1, A2, A3, A4, A5 , A6, A7]�

�T4, [A1, A2, A3, A4, A5]�

�T3, [T4, A6, A7]�

�T4, [A1, A2, A3, A4, A5]�

Figure 2: Illustration of the process of replacing a sequence
of actions by a task to generate hierarchical plans.

be generated from the task matrix in Table 1. One for T1

with actions a1, ..., a12, one for T2 with actions a1, ..., a8,
one for T3 with actions a1, ..., a7, one for T4 with actions
al, ..., a6, and one for T5 with actions al, ..., a9. Notice that
the intuition behind this process is just to look at sequences
of actions that happened before a particular task was satis-
fied, since those actions are a plan to complete that task.

Finally, if there are any two raw plans p =
〈T1, [a1, ..., aj]〉 and q = 〈T2, [a

′
l, ..., a

′
l]〉 such that the se-

quence of actions in p is a subset of the sequence of actions
in q, such the sequence of actions in q is replaced by a sub-
task element T1. The intuition is that the sequence of actions
that was replaced are assumed to aim at achieving T1. Fig-
ure 2 illustrates this idea. Notice that the order in which we
attempt to substitute actions by subtasks in plans will result
in different final plans. Finally, from each one of the result-
ing raw plans a case can be learned.

Dependency graph Learning
The two previous case acquisition strategies assume that the
order in which the expert executed the actions is a total or-
der that captures the precondition-postcondition dependen-
cies between actions. However, this is not necessarily the
case, and if the CBR system knows the proper dependen-
cies, plans can be better executed and adapted.

1.- Harvest(U2,(0,16))
” ”

Plan
2

2.- Train(U4, peasant)
3.- Harvest(U3,(17,23))
4.- Train(U4,”peasant”)
5.- Build(U5,”LumberMill”,(4,23))

1 3 4

6.- Build(U5,”Barracks”,(8,22))
7.- Train(U6,”archer”)
8.- Build(U5,”tower”)

” ”

5 6

7 9

8

9.- Train(U6, archer)
10.- Attack(U7,EU1)
11.- Attack(U8,EU2) 10 11

Figure 3: An example dependency graph constructed from a
plan consisting of 11 actions in an RTS game.

A dependency graph (Sugandh, Ontañón, and Ram 2008)
is a directed graph where each node represents one action in
the plan, and edges represent dependencies among actions.
A dependency graph is easily constructed by checking each
pair of actions ai and aj , such that ai was executed ear-
lier in the plan, and checking if one of the postconditions
of ai matches any precondition of aj , and there is no ac-
tion ak that has to happen after ai that also matches with
that precondition, then an edge is drawn from ai to aj in
the dependency graph, annotating it with which is the pair
of postcondition/precondition that matched. Figure 3 shows
an example dependency graph (where the annotations in the
edges have been omitted for clarity). The plan shown in the
figure shows how each action is dependent on each other,
and it is useful to determine which actions contribute to the
achievement of particular goals.

The dependency graph learning strategy (DGML) is
equivalent to the monolithic learning strategy, but instead
of learning a sequential plan, the resulting plan has a partial
order of its actions, based on their dependencies.

Dependency graph Hierarchical Learning
The dependency graph hierarchical learning strategy
(DGHL) is equivalent to the hierarchical sequential learn-
ing strategy, but instead of learning sequential plans, the re-
sulting plans have a partial order of its actions, based on
their dependencies. This is the learning strategy presented
in (Ontañón et al. 2009).

Timespan Learning
The idea of exploiting precondition-postcondition matching
to create a dependency graph can greatly help in plan ex-
ecution and in plan adaptation. However, since actions are
not instantaneous in RTS games, but are durative, the simple
task-matrix analysis presented in the previous sections may
generate inexistent dependencies. For example if an action a
started before another action b, but a didn’t finish until after
b was started, b can never have a dependency with a.

The idea of timespan analysis is to detect when did ac-
tions complete their execution in the expert demonstrations.

338

Figure 4: A screenshot of the S3 game.

To do so, it suffices with testing when the postconditions of
the different actions got satisfied during the demonstration.

The timespan learning strategy (TSML) is identical to the
DGML strategy, but after generating the dependency graphs,
timespan analysis is used to remove those dependencies that
are inconsistent with action duration.

Timespan Hierarchical Learning
Finally, the timespan hierarchical learning strategy (TSHL)
is identical to the dependency graph hierarchical learning
strategy, but timespan analysis is used to remove those de-
pendencies that are inconsistent with action duration.

Experimental Evaluation
In order to evaluate the different case acquisition strategies
presented in this paper, we used a strategy game called S3,
which is a simplified version of the Warcraft RTS game, still
capturing the complexity of the domain, but eliminating all
of those aspects unrelated to AI research (e.g. animations,
user interfaces, etc.). Figure 4 shows a screenshot of S3,
where the red player is attacking the base of the blue player
with two knights. In S3, players need to collect wood (by
chopping trees) and gold (by mining gold mines), in order to
construct buildings and attack units to defeat the opponent.
To achieve those goals, there are 8 different action operators
they can use, each of them with 2 to 5 parameters. We cre-
ated a collection of 5 different maps with different charac-
teristics. Two maps contained several islands connected by
small bridges, two maps contained walls of trees that play-
ers had to cut through in order to reach the enemy, and one
map consisted on a labyrinth of trees with each player on
one side, and two large gold mines in the center. Maps in
S3 are represented by a two-dimensional grid, where in each
cell we can have grass, water or trees. The maps used in our
evaluation had size 64x32 cells. S3 contains 4 built-in AIs,
implementing 4 different strategies: footman-rush, archers-
rush, catapults-rush and knights-rush.

We created a fifth AI, that we call the expert, implement-
ing a defensive knights rush strategy (where first, a forma-
tion of defensive towers are created, and then knights are
sent to attack the enemy) and generated expert demonstra-
tions by making this strategy play against all of the other AIs

Strategy Wins Ties Loses Destroyed Lost
Expert 8 6 11 2.53 3.37
RL 1 3 21 2.24 2.02
SML 2 2 21 2.23 3.29
SHL 2 2 21 0.94 0.96
DGML 4 4 17 4.40 4.08
DGHL 2 3 20 1.78 3.45
TSML 5 5 15 7.22 2.8
TSHL 3 5 16 2.55 3.02

Table 2: Experimental results of the 7 strategies evaluated
against the built-in AIs in 5 different maps.

in all of the maps, and also against itself. Then, we randomly
selected 5 of such demonstrations where the expert had won
the game, constituting the training set. In each demonstra-
tion the expert executed an average of 121.6 actions (mini-
mum 15, and maximum 496). In our experiments, the expert
created an average of 40.4 units per game (having a maxi-
mum of 33 at once).

Seven different instances of the D2 system were created
using each of the case acquisition strategies, and the result-
ing systems played against the 4 built-in AIs and the expert
in all the maps. Thus, each instance of D2 played 25 games.
If a game reached 100000 cycles, it was considered a tie.
Table 2 show the number of wins, ties and loses as well as
the average number of units that each of the instances of D2
destroyed (D2 killing units from the other AI) or lost (D2’s
units being killed by the other AI).

Table 2 shows that none of the methods was able to per-
form as well as the expert, although some of the strategies,
like TSML, got close. The results show that the reactive
learning (RL), sequential monolithic learning (SML) and hi-
erarchical monolithic learning (SHL) obtained the worst re-
sults (21 defeats). RL’s problem was that it had troubles se-
quencing actions in order to satisfy their preconditions. As
reported in (Floyd, Esfandiari, and Lam 2008), for this strat-
egy to work, some times we require large amounts of cases.
From the 5 provided traces, about 1200 cases could be gen-
erated by RL, which probably was not enough, given the
complexity of the domain. The problem of SML is that it
did not know how to recover from plan failures, and had to
restart execution from the beginning. Finally, SHL has prob-
lems because the simple technique used to infer hierarchical
structure creates odd substitutions caused by ignoring the
duration or the dependencies of the actions.

Table 2 also shows that by incorporating dependency
graph analysis and timespan analysis, the resulting mono-
lithic strategies, DGML and TSML, obtain much better re-
sults than the base sequential one (SML). This shows that
having a deeper understanding of the relations among the
expert actions is a clear help during the adaptation and ex-
ecution phase. For example, TSML, only gets defeated 15
times, compared to 21 times of SML. We observe similar im-
provements with the hierarchical learning techniques, where
DGHL and TSHL obtain better results than SHL.

Overall, the technique that obtains better results is TSML.
Even if being a monolithic learning approach (having to

339

restart a plan from scratch if it fails), since the case acqui-
sition has learned a very good dependency graph between
the actions, plans tend to execute successfully. The results
also show that the hierarchical learning techniques tend to
perform worse than their monolithic counterparts. This was
a surprising result, given that previous work has shown hi-
erarchical case acquisition techniques obtain good results in
RTS games (Ontañón et al. 2010). The difference is that in
(Ontañón et al. 2010) traces were spliced hierarchically by
the expert himself, whereas here we use the task-matrix to
automatically detect the hierarchical structure of a demon-
stration, and this method tends to obtain bad hierarchical
decompositions. Finding a better way to learn hierarchical
plans from expert demonstrations is part of our future work.

Conclusions and Future Work
This paper has presented a comparative evaluation of seven
different case acquisition techniques for CBR systems that
use learning from demonstration. Specifically, we have fo-
cused on the domain of real-time strategy games (RTS) due
to their complexity. We incorporated all those techniques
into the D2 CBR system to evaluate their performance.

We showed that the reactive learning strategy (RL) cannot
produce coherent behavior because it does not reason about
the order in which actions must be sequenced. This strat-
egy requires a larger collection of cases in order to produce
meaningful behavior. For that reason, strategies that extract
as much information as possible from the expert demonstra-
tion (like action dependencies) obtain better results when
learning from fewer traces (5 in our experiments). The other
strategies can reason about action sequencing and perform
better. However, they prevent the system from reacting to
unexpected changes in the game: once a plan has started ex-
ecuting, the system will not change it unless it fails. An in-
teresting new idea is that of temporal backtracking (Floyd
and Esfandiari 2011), where a collection of reactive cases is
learned, but each case has a link to the action that was exe-
cuted previously (which is stored as a different case). At re-
trieval time, this information can be used to obtain some sort
of reasoning about which actions to execute after other ac-
tions, while preserving the reactiveness of the system. How-
ever, this technique requires a different case retrieval mech-
anism, and thus, was out of the scope of this paper.

As part of our future work we would like to explore three
main lines of research. First, how can we incorporate reac-
tiveness into sequential case acquisition strategies by learn-
ing plans with conditionals. Second, how can we incorpo-
rate reasoning about sequences into reactive case acquisi-
tion strategies (temporal backtracking seems to be a promis-
ing like of work). And third, we would like to experiment
with new techniques to obtain the hierarchical structure of
an expert demonstration that improve the results obtained
by the task-matrix. Additionally, evaluation with other RTS
domains, such as Starcraft, is also part of our future work.

References
Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learning to
win: Case-based plan selection in a real-time strategy game.

In ICCBR’2005, number 3620 in LNCS, 5–20. Springer-
Verlag.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robot. Auton. Syst. 57:469–483.
Buro, M. 2003. Real-time strategy games: A new AI re-
search challenge. In IJCAI’2003, 1534–1535. Morgan Kauf-
mann.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte carlo
planning in rts games. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG).
Floyd, M. W., and Esfandiari, B. 2011. Learning state-based
behaviour using temporally related cases. In Proceedings of
the Sixteenth UK Workshop on Case-Based Reasoning.
Floyd, M. W.; Esfandiari, B.; and Lam, K. 2008. A case-
based reasoning approach to imitating robocup players. In
In: Proceedings of FLAIRS-2008.
Hogg, C. M.; Muñoz-Avila, H.; and Kuter, U. 2008. Htn-
maker: Learning htns with minimal additional knowledge
engineering required. In AAAI-2008, 950–956.
Könik, T., and Laird, J. E. 2006. Learning goal hierarchies
from structured observations and expert annotations. Mach.
Learn. 64(1-3):263–287.
Marthi, B.; Russell, S.; Latham, D.; and Guestrin, C. 2005.
Concurrent hierarchical reinforcement learning. In Inter-
national Joint Conference of Artificial Intelligence, IJCAI,
779–785.
McCoy, J., and Mateas, M. 2008. An integrated agent for
playing real-time strategy games. In AAAI 2008, 1313–1318.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE 77(4):541–580.
Ontañón, S.; Bonnette, K.; Mahindrakar, P.; Gmez-martn,
M. A.; Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A.
2009. Learning from human demonstrations for real-time
case-based planning. In IJCAI 2009 Workshop on Learning
Structural Knowledge From Observations (STRUCK).
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Ontañón, S.; Montaña, J. L.; and Gonzalez, A. J. 2011. To-
wards a unified framework for learning from observation.
In IJCAI 2011 Workshop on Agents Learning Interactively
from Human Teachers (ALIHT).
Schaal, S. 1996. Learning from demonstration. 1040–1046.
Sharma, M.; Homes, M.; Santamaria, J.; Irani, A.; Isbell, C.;
and Ram, A. 2007. Transfer learning in real time strategy
games using hybrid CBR/RL. In IJCAI’2007, 1041–1046.
Morgan Kaufmann.
Sugandh, N.; Ontañón, S.; and Ram, A. 2008. On-line case-
based plan adaptation for real-time strategy games. In AAAI
2008, 702–707.
Weber, B. G., and Mateas, M. 2009. A data mining ap-
proach to strategy prediction. In IEEE Symposium on Com-
putational Intelligence and Games (CIG).

340

