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Abstract

Human decision making is a complex process. In the
field of Artificial Intelligence, decision making is con-
sidered an essential aspect of autonomous agents. Re-
search of human decision behaviour shows that emo-
tions play a decisive role. We present a computational
model for creating an emotional memory and an algo-
rithm for decision making based on the collected infor-
mation in the memory. We concentrate on simulating
human behaviour as there is not always one perfect way
to reach a goal but alternatives that are more advanta-
geous. For evaluation purposes a gambling task, per-
formed by real subjects, was created for the modelled
agent. The results show that the decision behaviour of
the modelled agent is comparable with real subjects.

Introduction
Our lives are affected by decisions. Due to the complexity
of the factors that lead to a decision human decision making
processes are still a relevant field of research. One popular
theory concerning decision making was proposed by Dama-
sio. In his so called Somatic Marker Hypothesis he describes
the significance of emotions in the decision making process
(Damasio 1994). The function of emotions is specified as a
filtering process to select a subset of actions before a ratio-
nal analysis is executed. Principal components of Damasios
theory are the Somatic Markers that are representing images
of certain emotions for each pair of stimulus and action. By
creating Somatic Markers it is possible to build up an emo-
tional memory. Those recorded images of emotions can be
used for decision making without waiting for a response of
the body. That is what Damasio called the as if loop because
the further processes will be triggered as if there was a real
emotion. As robots take more and more part in the society
(Dautenhahn 2002), it is necessary to create agents which
are able to find acceptance and react as humanely as pos-
sible. In the following chapters we present a computational
model for Somatic Markers and a thereon based decision
making algorithm in which no fixed threshold is used. The
performance of the presented approach was evaluated with
a simulated agent that had to perform the same task as real
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subjects in an experiment created by Bechara (Bechara et al.
1994).

Related Work
Emotion modelling for the decision making process of ar-
tificial agents is used in several approaches, some of which
are using emotions in addition to common learning methods.
But there also exist frameworks in which the learning of be-
haviour only depends on emotion modelling approaches. A
framework in which Somatic Markers are used for decision
making can be found in (Pimentel and Cravo 2009), a further
approach is presented in (Hoogendoorn et al. 2009). Both
use different implementations for Somatic Markers and for
decision making algorithms and a fixed user-given thresh-
old for action selection. When applying such approaches to
a real robot intended to be embedded in a social environ-
ment, the thresholds for different stimuli may have to be
varied. These individual thresholds are hard to model as the
rewards may not be predictable and a lot of knowledge is
necessary. Therefore a new framework, including an auto-
matically adaptive threshold is presented here.

Modelling of Somatic Markers
Basic Components of the Agent
An agent with artificial intelligence mostly consists of the
following components:

1. A set S = {s1, ...., sm} which contains all stimuli that
could be recognized. A stimulus can be a single signal or
sensory value but also a combination of different inputs
which describe a whole situation.

2. A set A = {a1, ...., an} which contains all actions that
could be executed.

3. m sets Rsi = {r1, ...., rl} which contain all possible
rewards that can be received for executing an action in
consequence of this stimulus. Just like in real life, some
decisions are riskier than others, e.g. the gravity of the
worst case scenario is depending on the existing stimu-
lus. Therefore an own set of rewards for every stimulus is
necessary.

Definition and Role of Somatic Markers
Every time the agent recognizes a known stimulus si, a de-
cision has to be made. The chosen action aj will lead to a
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reward rk out of the set Rsi . A negative reward will lead
to a negative emotion and a positive reward will lead to a
positive emotion. The task of Somatic Markers is to record
emotions which represent the made experiences for choos-
ing an action aj if a stimulus si is recognized. According to
that for each pair of stimulus si and action aj a value σi,j
exists which represents the Somatic Marker (1).

M =

M1

...
Mm

 =

σ1,1 · · · σ1,n
...

. . .
...

σm,1 · · · σm,n

 = (σi,j) (1)

Normally the agent should not have any knowledge in the
beginning. This will be realized by initializing the whole
matrix with zeros. The computation of the Somatic Mark-
ers is based on the received rewards. The human emotional
memory can be continuously updated every time it is getting
new information in the form of a reward, which is the con-
sequence of a made decision concerning a specific stimulus.
To model this updating process, collected knowledge (rt−1i,j ),
new knowledge (rti,j) and a weighting between them should
be considered. For this reason an exponential smoothing
(Winters 1960) (see equation (2)) is used for the incoming
rewards because it fulfils the combined request.

rti,j = λ·rti,j+(1−λ)·rt−1i,j , rti,j ∈ Rsi , λ ∈ [0, 1] (2)

The smoothed value is used as input for a tanh function
which maps it to the interval ] − 1;+1[, where a negative
value indicates a negative emotion and a positive value indi-
cates a positive emotion. There are also two additional char-
acteristics of the tanh that are interesting. First, the high
gradient for inputs near to zero, which allows the agent to
perform an explicit categorization in order to determine if a
decision was good or bad even after a few decisions. Second,
the decreasing gradient for higher or lower inputs which en-
sures that consolidated knowledge is resistant to fluctuation.
At this point the computation for a Somatic Marker is shown
in equation (3). It is observable that the value rt−1i,j is needed
for the computation. Instead of saving this value, it is possi-
ble to compute it by using equation (4).

σt+1
i,j = tanh(rti,j) (3)

rt−1i,j = tanh−1(σt
i,j) (4)

Scaling of Rewards
A problem which needs to be fixed is the scaling of the re-
wards. As the computation range on computers is limited,
which can lead to wrong outputs of the tanh, the scaling
shown in equation (5) is used. The reason for selecting π
is that the result of tanh(π) is close to 1 and the computa-
tion range is sufficient. In the following the symbol rtscaled
for scaled rewards will be abandoned and it will be assumed
that every reward rt is already scaled.

rtscaled =
rt

max
{
|r|
 r ∈ Rsi

} · π (5)

Consideration of Frequency
It is not guaranteed that the worst reward and the best re-
ward share the same absolute value. Due to the fact that an
exponential smoothing and a scaling is used, some Somatic
Markers do not converge against tanh(π) or tanh(−π)
but against another level. For example if min(Rsi) < 0,
max(Rsi) > 0 and |min(Rsi)| >> |max(Rsi)| is the case.
Here no Somatic Marker could converge against tanh(π)
even when only positive rewards are given. Also it should
be considered that frequently given rewards with a lower
magnitude can reach the same impact on decision behaviour
than a single reward with a higher magnitude. To reach these
goals the exponential smoothing needs to be modified. Table
1 shows the desired weighting of knowledge in different sit-
uations. In the case that collected knowledge is unreliable
only new knowledge should be considered. But instead of
considering only collected knowledge if it is reliable, both,
collected and new knowledge, will be fully considered. The
reason is that new knowledge will probably match with col-
lected knowledge, which means if collected knowledge e.g.
is positive the probability is high that the same action will
lead to a positive outcome. During the learning period a
weighting shown in table 1 is used. With this new weight-
ing it can be shown that every Somatic Marker can converge
against tanh(π) or tanh(−π) even for frequently given re-
wards with a lower magnitude. An other advantage is that
the agent is still able to perform a reversal learning process if
necessary because if e.g. collected knowledge is positive but
the agent gets a high punishment this has a major influence
on the Somatic Marker, in case of a minor punishment the in-
fluence is small so that the Somatic Marker will not change
a lot. During the learning period collected knowledge and
new knowledge should have an effect on the computation of
Somatic Markers. Considering the described goals in Table
1 the modification of equation (2) can be seen in equation
(6) where the parameters λ and µ will be computed with the
quadratic functions (7) and (8).

rti,j = (µ+ λ− (λ · µ))︸ ︷︷ ︸
weighting new knowledge

·rti,j+ ((1− λ) + (λ · µ))︸ ︷︷ ︸
weighting collected knowledge

·rt−1i,j

(6)

λ =
1

−(c2)
· (κ)2 + 1 (7)

µ =
1

c2
· (κ)2 (8)

The parameter κ represents how reliable the collected
knowledge is rated, while c is a constant that defines the
limits when collected knowledge is most reliable. A visu-
alisation of the weighting functions can be seen in figure 1.
When κ is 0 the agents collected knowledge is not reliable
or no knowledge available, if κ is reaching c or−c collected
knowledge is most reliable. It is observable that collected
knowledge is taken more into account when it becomes more
reliable. New knowledge will always be considered so that
the agent is always able to change its behaviour, the decreas-
ing of the weighting during the learning period avoids that
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the Somatic Marker is affected too much by a single outlier.
Notice that the output of (6) could be outside of the interval
[−π; +π], hence the result is set to π or −π in this case.

Case rti,j

Unreliable knowledge 1 · rti,j + 0 · rt−1
i,j

Reliable knowledge 1 · rti,j + 1 · rt−1
i,j

Learning period w · rti,j + ŵ · rt−1
i,j , w + ŵ ∈]1; 2[

Table 1: Desired weighting after changing equation (2).

Figure 1: Weighting of new and collected knowledge

As described before, the weighting of new knowledge and
collected knowledge depends on the reliability of collected
knowledge which is represented by κi for each stimulus (9).
At initialisation the value is set to zero, when e.g. getting
sequent positive rewards the value κt+1

i increases in each
step until it reaches the value c which means that the col-
lected knowledge is rated as most reliable. The same holds
for sequent negative rewards and reaching -c. The compu-
tation (see equation (10) (11)) also considers the magnitude
of the current reward, so that rewards of a higher magnitude
will have more influence on the computation. The rounding
ensures that rewards with a small magnitude at least increase

or decrease κ̂t+1
i by 1.

~κ =

κ1
...
κm

 , κi ∈ [−c, c], c ∈ N (9)

κ̂t+1
i =



κti, if rti ∨ r
t−1
i = 0

κti +

⌈
rti

max
{
|r|
r∈Rsi

} · c
⌉
, if rti > 0

κti +

⌊
rti

max
{
|r|
r∈Rsi

} · c
⌋
, if rti < 0

(10)

κt+1
i =


−c, if κ̂t+1

i < −c
c, if κ̂t+1

i > c

κ̂t+1
i , else

(11)

Selecting Actions
Desired Output
For creating an algorithm to make decisions based on So-
matic Markers, the desired output of such an algorithm has
to be defined. The main task of Somatic Markers are postu-
lated by Damasio as follows:

Somatic markers do not deliberate for us. They assist
the deliberation by highlighting some options (either
dangerous or favorable), and eliminating them rapidly
from subsequent consideration. (Damasio 1994)

Given this statement for the output of the algorithm, the
desired output has to be a set A′ ⊆ A which contains all ac-
tions that are still available. Afterwards a further cost/benefit
analysis between the available actions could be made, but in
the following there will be no further analysis and the agent
randomly chooses an action out of A′.

Threshold
The setA′ includes all actions aj whose corresponding value
σi,j is greater or equal to a threshold. In contrast to the work
of (Pimentel and Cravo 2009; Hoogendoorn et al. 2009)
which also modelled a decision making algorithm based
on Somatic Markers, no fixed user-given threshold is used.
Here an own threshold θi (12) exists for every stimulus. The
threshold can be seen as a frustration level of the agent. If the
agent is getting punished for a decision regarding a special
stimulus the corresponding threshold will decrease which
may let the agent consider other options next time, while the
decision behaviour for other stimuli remains unaffected. The
frustration level also depends on rewards and the same equa-
tions as are used for updating the Somatic Markers are used,
but there is a difference in the number of updates. While the
frustration level will always be updated when a stimulus is
recognized (13), the update of a Somatic Marker is depend-
ing on a combination of both a stimulus and an action.

~θ =

 θ1
...
θm

 , θi ∈]− 1; 1[ (12)

θt+1
i = tanh(rti) (13)

Selection Conditions
The current selection condition can be expressed like in
equation (14). It is possible that the selection leads to an
empty set A′ as no Somatic Marker fulfils the condition.
To solve the problem of the empty set, two additional cases
need to be considered to ensure that A′ 6= �.

aj ∈ A′ ⇔ σi,j >= θi (14)

1. For the first case (15), the solution is expressed in equa-
tion (16). Because all values lie within the interval [0; 1[,
the newly created threshold by using the multiplication
(see (16)) is smaller than the maximum of all Somatic
Markers and it is also possible that Somatic Markers
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which are close to the maximum lie above the new thresh-
old, too. Observe that the value θi will not be changed and
will be used in the next steps.

θi >= 0 ∧max(Mi) >= 0 ∧ θi > max(Mi) (15)

aj ∈ A′ ⇔ σi,j >= θi ·max(Mi) (16)

2. For the second case (17), actions should become avail-
able which are marked as bad choices but whose Somatic
Marker has got a higher value than the worst one. When
using the condition shown in (18) the setting of the thresh-
old depends on the difference between the maximum and
the minimum of Somatic Markers. If there is a small dif-
ference, for example 0, the threshold will be −1 and all
actions become available because their Somatic Markers
lie within the interval ]0;−1[ and so they are greater than
the new threshold. This is the desired output because no
alternative is better than another one. In case of a high dif-
ference the threshold will be close to the maximum and
only the maximum or values close to it will be greater
than the threshold.

max(Mi) < 0 ∧ θi > max(Mi) (17)

aj ∈ A′ ⇔ σi,j >= −(
max(Mi)

min(Mi)
) (18)

Algorithm
After introducing all parts and equations, the decision mak-
ing algorithm can be combined to the following steps:

1. Recognition of a stimulus si
2. Selection of subset A′ respective to si (14),(16),(18)
3. Random choice of action aj from A′

4. Reception of reward rt for the executed action aj
5. Update of the corresponding Somatic Marker σi,j (3)
6. Update of the frustration level θi (13)
7. Update κi (10), (11)

Evaluation

Gambling Task
To support the Somatic Marker Hypothesis, Bechara devel-
oped the so called Gambling Task (Bechara et al. 1994;
Damasio 1994). In this experiment a subject is given 2000$
(play money, but looking like real money) and sits in front
of four decks of cards. The subject can take a card from an
arbitrary deck and it is not allowed to take notes. Each card
gains a benefit but some cards also lead to a penalty. This
procedure will be repeated 100 times and after every turn
the given amount will be updated. The number of trials is
not known by the subjects. The goal is to increase the given
amount. Every deck is prepared in a special way:

• Deck A: Every card gives a benefit of 100$ and five out of
ten cards additionally have a penalty of -250$

• Deck B: Every card gives a benefit of 100$ and one out of
ten cards additionally has a penalty of -1250$

• Deck C: Every card gives a benefit of 50$ and five out of
ten cards additionally have a penalty of -50$

• Deck D: Every card gives a benefit of 50$ and one out of
ten cards additionally has a penalty of -250$

After ten cards from deck A the subject has a net loss of
250$. The same goes for taking cards from deck B but with
the difference that deck A contains more frequent penalties
with a lower magnitude and deck B contains less frequent
penalties with a high magnitude. As the net loss of both is
negative they could be declared as disadvantageous decks.
In contrast deck C, D have a net of 250$ and can be declared
as advantageous decks. The results show that people who
have no damage in regions of the brain which are responsi-
ble for creating Somatic Markers, avoid the disadvantageous
decks and choose more often from the advantageous decks.
A control group with ventromedial frontal patients show a
preference for cards of the disadvantageous decks. The ded-
icated goal of this approach is to reach comparable results
to healthy people, so the same task is prepared for the simu-
lated agent.

Initialisation
Taking the Gambling Task as a basis, the system of the agent
contains the following components:

• S = {takeCard︸ ︷︷ ︸
s1

}

• A = {deckA︸ ︷︷ ︸
a1

, deckB︸ ︷︷ ︸
a2

, deckC︸ ︷︷ ︸
a3

, deckD︸ ︷︷ ︸
a4

}

• Rs1 = {−1150,−200,−150, 0, 50, 100}

There is only one stimulus takeCard and four different
possible actions which stand for taking a card from a deck.
With the explained configuration of the decks six different
rewards are possible. Remember that even when there is a
penalty the subject also earns money. For example by taking
a card from deck B that lead to a penalty the total reward is
100 − 1250 = −1150. The evaluation consists of 100 runs
where in each run the agent has to make 100 decisions so
totally 10000 decisions are considered. All data will be re-
set after each run. At the beginning of each run every action
will be executed once before the selection process becomes
active. For the parameter c the value 10 is used. So a posi-
tive reward of 50 will increase κ by one while a reward of
−1150 will decrease κ by ten. A very small value like 1 for
c is not advisable because collected knowledge is too fast
declared as reliable or will be discarded too fast. A higher
value (e.g. 100) has the effect that more frequent lower mag-
nitude rewards are needed to reach the same weighting as the
maximum magnitude (because of the rounding). The overall
results here are not extremely sensitive concerning a higher
value for c but some decisions are not as desired.
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t θ1 σ1,1 σ1,2 σ1,3 σ1,4 A′ aj rt rt−1
i κ1

0 0.00 0.00 0.00 0.00 0.00 {a1, a2, a3, a4} a4 −200 0 0
1 −0.49 0.00 0.00 0.00 −0.49 {a1, a2, a3} a1 −150 −200 0
2 −0.38 −0.38 0.00 0.00 −0.49 {a2, a3} a3 0 −150 −2
3 −0.03 −0.38 0.00 0.00 −0.49 {a2} a2 100 0 −2
4 0.25 −0.38 0.25 0.00 −0.49 {a2} a2 100 100 −2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
18 0.26 −0.38 0.26 0.00 −0.49 {a2} a2 −1150 100 1
19 −0.99 −0.38 −0.99 0.00 −0.49 {a1, a2, a3, a4} a1 −150 −1150 −9
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
44 0.13 −0.39 −0.99 0.13 0.14 {a3, a4} a4 −200 50 0
45 −0.49 −0.39 −0.99 0.13 −0.49 {a1, a3, a4} a4 50 −200 −2
46 0.08 −0.39 −0.99 0.13 0.08 {a3, a4} a4 50 50 −1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
99 0.98 −0.39 −0.99 0.00005 0.98 {a4} a4 −200 50 10

Table 2: Selected points in time of one run, each with the current values

Figure 2: Show the threshold and Somatic Markers for the presented example. The threshold is the same for every Somatic Marker. When
the agent decided to choose only action a4 the values θ1 and σ1,4 are equal.

Example Case
For the presented example table 2 shows values of selected
points in time. As described before, every action will be ex-
ecuted once before the algorithm starts at t = 4 with the
selection based on the equations (14) (16) (18). It could be
observed that healthy people show an early preference for
deck A or B, but later change their preferences to the advan-
tageous decks (Damasio 1994). The reason could be that the
immediate reward of deck A,B is higher than in deck C and
D. Also, the modelled agent shows an early preference for
deck B until in t = 18 the penalty makes all actions avail-
able in the next step. Figure 2 shows that this happened be-
fore at t = 13 but the agent randomly chose deck B again.
The last time that a disadvantageous deck can be chosen is
at t = 45 after receiving a penalty at t = 44, but the advan-
tageous deck D is randomly chosen. From this point only
choices between the advantageous decks C and D are pos-
sible. Later on A′ only contains a4, which leads to the final
state shown at t = 99. Figure 3 shows all selections in con-

trast to a typical result of the original experiment (Bechara et
al. 1994). In both cases preferences for advantageous decks
are observable after several choices.

Results
In table 3 the overall results are listed. The data for the de-
scribed mixed deck configuration show that the sum of cho-
sen disadvantageous decks is only 11.18% and so nearly
90% of all decisions rebound on an advantageous deck.
When considering only the first 25 choices of every run it
is observable that a learning process has taken place. Here
the number of choices for disadvantageous decks is 42.12%,
hence nearly 50%. If one compares these results with the
results of the original experiment (Bechara et al. 1994;
Damasio 1994), the similarities can be found in a high pref-
erence for advantageous decks. A difference is observable
in the distribution of the choices between the advantageous
decks. The presented results show that deck C is chosen
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Figure 3: Show the decisions of a typical real subject (Bechara et al. 1994) (left) and the results of the modeled agent (right)

1. Mixed configuration
deck A deck B deck C deck D

First 25 438 615 736 711
17.52% 24.60% 29.44% 28.44%

Total 498 620 6804 2078
4.98% 6.20% 68.04% 20.78%

Humans ≈ 14% ≈ 18% ≈ 34% ≈ 34%

2. More frequent penalties with a lower magnitude
deck A deck B deck C deck D

First 25 228 258 974 1040
9.12% 10.32% 38.96% 41.60%

Total 228 258 4404 5110
2.28% 2.58% 44.04% 51.10%

3. Less frequent penalties with a higher magnitude
deck A deck B deck C deck D

First 25 627 689 577 607
25.08% 27.56% 23.08% 24.28%

Total 689 820 4171 4320
6.89% 8.20% 41.71% 43.20%

Table 3: Results with different configurations of the decks includ-
ing results for human subjects (Bechara et al. 1994).

nearly 50% more often than deck D, although both decks
are advantageous decks. However, the original results do
not show a significant difference between the numbers of
choices of advantageous decks. This effect can be explained
by the possible rewards of deck C. Either the agent will get
a reward of 50 or the reward will be 0. With this config-
uration the value of the dedicated Somatic Marker cannot
be negative. If the values of all other Somatic Markers are
negative, the agent will always choose deck C. By chang-
ing the configuration of the decks, resulting in equality of
possible rewards of the disadvantageous decks and the ad-
vantageous decks respectively, it is assured that there is no
significant difference between the choices of both advanta-
geous and disadvantageous decks. The configuration with
more frequent penalties of a lower magnitude (configuration
of deck A and C) leads to a faster preference of the advanta-
geous decks than the configuration with less frequent penal-
ties of a higher magnitude (configuration of deck B and D).
This is not astonishing as the chance is much higher to re-
ceive an early penalty with more frequent penalties. If one
compares the two cases shown in figure 3, it is observable
that a real subject sometimes chooses from disadvantageous
decks even after several decisions while the modelled agent

does not. Of course there are other factors which have an ef-
fect on the decision making process like an additional ratio-
nal analysis of the situation, or personality which can lead to
the discussed few choices. Therefore the number of choosen
disadvantageous is higher than for the modelled agent. But
the preference for advantageous decks can clearly be ob-
served for human subjects as for the modelled agent.

Conclusion
An approach for decision making, consisting of an architec-
ture to model Somatic Markers and an algorithm for decision
making based on the Somatic Markers with no fixed, user
given threshold was presented. The results of the modelled
agent are comparable to the decision behaviour of human
beings. Subsequent work in this field would include concen-
trating on additional aspects which affect the decision mak-
ing process, like drives for example. Then applying the ap-
proach to a real robot with complex scenarios would be an
interesting field of research and an important step towards
creating modelled agents capable of making humanlike de-
cisions.
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