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Abstract

Artifact capabilities can play an important role in understand-
ing human cognition. Over time humans learn to use artifacts,
evolve the knowledge and combine acquired capabilities with
others to form complex capabilities. In this study we present
a hybrid ontology for artifacts to facilitate learning artifact
capabilities. We develop a framework where agents simulta-
neously exploit a centralized artifact ontology in the environ-
ment and a distributed artifact ontology local to each agent.
We demonstrate how both ontologies can be used by agents
both in the artifact selection process and in learning artifact
use. The local ontology serves as domain knowledge gained
by the agent as it learns. We illustrate an example to show
how an acquired artifact capability can be stored in an agent’s
local ontology for future use.

Introduction
It is a common contention among researchers in the cogni-
tive sciences that tool or artifact use has played a significant
role in the evolution of human intelligence. These capabil-
ities have aided humans in dealing with changes in the en-
vironment ultimately leading to a modification of the envi-
ronment to accommodate human needs. According to cogni-
tive scientist David Kirsh (2010), the basic process of using
a tool is driven by its physical constitution. Baker (2004)
provides a defense for the ontological status of artifacts as
objects with practical functions that are constituted of parts.

An artifact or tool in this study refers to any physical
object in the environment that provides some functional-
ity useful to a human agent towards the satisfaction of a
goal (Mokom and Kobti 2011b). These agents are artifact
capability-learning agents defined as rational agents (BDI-
theory) that employ learning techniques towards discover-
ing how to use artifacts. Singh (1999) argued that residing
within the agent’s belief are two complementary aspects:
“know-that” specifies what the agent knows about the world
and “know-how” describes the agent’s procedural knowl-
edge for executing plans.

In this study we integrate the use of domain knowl-
edge into the artifact capability learning model presented in
Mokom and Kobti (2011b) via a hybrid ontology for arti-
facts. The model supported agents utilizing exploratory evo-
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lutionary methods towards learning artifact capabilities. A
centralized ontology for artifacts as objects with immutable
properties and constraints is used to create a knowledge base
(KB) of artifacts in the environment. Complementary to this,
a distributed ontology specific to each agent maintains a dy-
namic local KB representing each agent’s domain knowl-
edge of artifacts. While the centralized KB allows for the fil-
tering of an agent’s choice of actions, an evolving local KB
facilitates an agent’s use of prior discoveries in the learning
process.

The next section provides some background on related
work. It is followed by a description of our hybrid ontology
incorporated within an artifact capability-learning agent. We
demonstrate use of the ontologies with an illustrated exam-
ple, present conclusions deduced and future work.

Related Work
Some existing research efforts in creating models for human
cognitive capabilities with respect to artifacts are worth not-
ing. In Stoytchev’s (2005) model, robots learned tool use
by randomly attempting different actions with the tool, ob-
serving and recording the results. The model was however
more concerned with robotic sensors and body schema than
the reasoning process involved. Omicini, Ricci, and Viroli’s
(2006) theory of artifact selection and use described an en-
vironment in which agents reason about artifacts for the
achievement of their goals. An ontology based on their work
allowed agents to exploit artifacts in the environment (Acay,
Pasquier, and Sonenberg 2007). In the model, artifacts ex-
posed a usage interface defined as an artifact’s permissible
operations, operating instructions described as procedures
for its use and a function description that specified what the
artifact is used for. However, the model’s requirement that
all these aspects exist in the form of tool manuals in the en-
vironment do not facilitate exploratory agents learning ar-
tifact capabilities. Furthermore, the incremental process of
learning is not accommodated.

A Hybrid Ontology for Artifacts
Incorporating the use of prior knowledge into learning mod-
els is necessary for the development of intelligent agents and
learning often builds on background knowledge involving an
incremental process (Russell and Norvig 1995).
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Figure 1: An artifact capability-learning agent

Table 1: Steps of artifact capability-learning agent

(1) PE selects a goal
(2) PE selects an artifact
Loop

(3) PE deliberates / performs action(s) with artifact
(4) PE performs updates based on percepts
(5) CE evaluates percepts / renders feedback to LE
(6) LE advises and/or suggests improvements to PE
(7)PE applies changes

Until PE is advised goal is achieved

The representation of an artifact capability-learning agent
(Mokom and Kobti 2011b) expanded to include the exploita-
tion of a hybrid ontology is presented in Figure 1. The gen-
eral steps of an artifact capability-learning agent are shown
in Table 1.

The agent’s cognition is composed of three main el-
ements. The performance element (PE) deliberates and
chooses the agent’s actions using its beliefs, goals and ca-
pabilities. Once an action is performed, the critic element
(CE) evaluates resulting percepts against an external prede-
fined standard of performance and provides feedback to the
learning element (LE) which is responsible for generating
suggestions towards improving the performance element.

Using Singh’s notions of “know-that” and “know-how”
(Singh 1999), artifact domain knowledge discovered by
the agent is defined using a distributed local ontology
(DL DAO) within the agent’s beliefs. A centralized ontol-
ogy (DL CAO) defining immutable properties of artifacts
accessible by every agent exists within the environment.

Representing Artifact Knowledge
Description Logic (DL) is chosen to represent the artifact
ontologies because it blends simple logical operations with
clear semantics (Russell and Norvig 1995) making it use-
ful for practical applications. Additionally, the inference in
DL has been proven to be tractable by sound and complete
algorithms based on the logic (Baader and Nutt 2003). A
DL-based KB is composed of a Terminology Box (TBox)
that provides axioms for concepts and roles in the domain
and an Assertion Box (ABox) that specifies axioms for con-

crete concepts and roles. DL-based description languages
use model-theoretic semantics. An interpretation I for any
such language is composed of a non-empty set∇I known as
the domain of interpretation and an interpretation function.
The function assigns a set AI ⊆ ∇I to every atomic con-
cept A and a set of binary relations RI ⊆ ∇I ×∇I to every
atomic role R. Our ontologies are defined using DL-based
basic AL-language (attributive language) (Baader and Nutt
2003).

DL CAO: A Centralized Ontology for Artifacts
Every artifact can be defined in terms of its immutable prop-
erties distinguishable from what an agent may know about
them. For example an agent may not be aware that a ball can
bounce but that has no bearing on the fact that the ball has a
bouncable property. The concept and role terminologies for
DL CAO are presented in Tables 2 and 3 respectively.

DL CAO provides definition for five concepts.

Concepts(1-4): An Artifact is defined as an object with at
least one part. An ArtifactPart can be another artifact or a
part with at least one physical and one functional attribute.
The PAttribute concept restricts a physical attribute to a
single value. The FAttribute concept allows a functional
attribute one or more possible values as well as constraints
specifying at least one value for which the constraint ap-
plies.

CompAttr: Defines the notion of a set of at least 2 func-
tional attributes that are compatible with each other, that
is, they can be applied together.

DL DAO: A Distributed Ontology for Artifacts
Agents maintain knowledge discovered while learning an ar-
tifact capability in a local dynamic KB stored in the agent’s
beliefs. Concept and role terminologies for DL DAO are
presented in Tables 4 and 5 respectively.

The capability is defined as as a sequence of tasks, per-
formable on an artifact for its use in a particular context
(Mokom and Kobti 2011b). An agent attempts a task by se-
lecting a value for one or more functional attributes. The
agent’s objective is to learn the values/combinations that get
it closer to fulfill the task and ultimately its goal.

DL DAO provides definitions for seven concepts.

Concepts(1-4): An Artifact is defined as an object whose
associated parts are artifact parts. An ArtifactPart can be
another artifact, otherwise, any associated attributes must
be either a physical or functional attribute. A physical at-
tribute can have only one value whereas a functional at-
tribute can have constraints with associated constraint val-
ues.

ArtifactFunction: Abstracts the major function of the arti-
fact. It includes the artifact and the context in which it is
used. It also specifies artifact parts discovered as unneces-
sary for the context and those discovered as required with
their associated physical attributes.

Procedure: Describes the operational instructions for an ar-
tifact use. It has an artifact, the context in which it is used
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Table 2: DL CAO concept terminology

(1) Artifact ≡ object u ∃hasPart.ArtifactPart
(2) ArtifactPart ≡ Artifact t (∃hasAttribute.PAttribute u ∃hasAttribute.FAttribute)
(3) PAttribute ≡ ≤ 1 hasV alue
(4) FAttribute ≡ ∃hasV alue.> u ∀hasConstraint. (∃hasV alue.>)
(5) CompAttr ≡ ≥ 2 hasAttribute u ∀hasAttribute.FAttribute

Table 3: DL CAO role terminology

hasPart hasValue
hasAttribute hasConstraint

and at least one task defined with its position in the se-
quence of tasks to support the fact that multiple tasks are
ordered.

Task: Has at least one functional attribute value represented
as an artifact part, a functional attribute and a chosen
value.

Exploitation of DL CAO and DL DAO
According to Figure 1, DL DAO resides in the agent’s belief
as part of PE and DL CAO exists in the environment. Table
1 indicates that the ontologies are possibly involved in Steps
(1, 2, 3, 4, 7). In this study we do not consider the use of the
ontologies for goal selection (Step 1) and assume the agent
has selected a goal g. We address the use of the ontologies
in the remaining steps which involves querying their respec-
tive ABox’s. For the rest of the paper we refer to DL CAO’s
ABox as Ac and DL DAO’s ABox as Ad.
(2) Artifact Selection: The agent performs a query on Ad

formulated as follows: Ad |= ArtifactFunction (f) ∧
∃useContext (f, g) ∧ ∃hasArtifact (f, a) to find every
artifact a that the agent knows to use for goal g. If the
returned set is non-empty, the agent can use the details
of f to ensure that any chosen artifact from the environ-
ment has the necessary parts and attributes. The artifact
can be chosen by simply querying Ac for a matching ar-
tifact: Ac |= Artifact (a). A more complex query might
check for the necessary parts and attributes and use those
to identify a possible artifact. If the returned set from the
query onAd is empty, then the agent must make a random
choice among the available artifacts.

(3) PE’s Deliberation: In order to choose what action(s) to
perform the agent queries Ac for a set of functional at-
tributes defined with the CompAttr concept, or any func-
tional attribute that can be attempted on its own. If the
artifact has been used before, the agent can consider con-
straint knowledge inAd when choosing values and ignore
parts that are not required.

(4) PE’s Updates Based On Percepts: PE might update Ad
based on the perception of its actions such as discov-
ered constraints. Since these constraints do not necessar-
ily mean that the artifact cannot still be used for the goal,
Ad is updated with the new assertions and PE waits for
CE to determine the real effect of the constraint.

(7) PE’s Changes: PE makes changes to Ad based on sug-
gestions provided by LE generated using CE’s feedback.
If the information indicates a new task has been learned
then a new task assertion is added toAd as part of an exist-
ing procedure or a new one is formulated. Other derivable
assertions include artifact parts that PE gets notified are
not necessary for the artifact function.

Once an agent successfully learns an artifact capability Ad
will contain domain knowledge obtained by the agent that
can be applied to future use of similar artifacts including the
context in which the artifact was used, abstracted to facilitate
artifact selection in the future.

A Simple Illustration
In this section we provide a simple illustration of the ac-
quisition of domain knowledge by an agent. We consider a
simple scenario. An agent encounters a pen for first time and
sets a goal to write with it. We assume the agent has no infor-
mation in its local domain knowledge Ad at the start of the
process.Ac contains assertions about the pen the agent finds.
Tables 6 and 7 represent Ac throughout the learning process
and a possible Ad at the end of the learning process respec-
tively. Assertions inAd are obtained as explained in the pre-
vious section. Integer ranges are assumed for the functional
attributes representing position held for hold and number of
cm moved for move.Ad shows that at the end of the process,
the agent has learned how to use a pen to write with a single
task in its procedure that involves holding the pen at posi-
tion 10 and moving it 1cm. If the agent had held the pen at
position 5, it would have been able to assert a constraint as
well.

Conclusions and Future Work
This study presents a hybrid ontology for artifacts usable
by agents learning artifact capabilities. The objective was
to facilitate the learning process for agents learning how to
use artifacts for their goals. A framework was developed
for agents to exploit a centralized artifact ontology in the
environment alongside a distributed ontology local to each
agent. A learning agent incrementally used information ob-
tained from the centralized ontology combined with domain
knowledge in its local ontology to make informed decisions
both in the artifact selection and use processes. An example
was illustrated to demonstrate how both ontologies are used.

This study is domain neutral and was conducted in order
to establish a general framework for learning artifact use by
exploiting domain knowledge. In order to test an implemen-
tation of the framework, a more specific domain is needed
in a defined case study. It would be useful to integrate the
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Table 4: DL DAO concept terminology

(1) Artifact ≡ object u ∀hasPart.ArtifactPart
(2) ArtifactPart ≡ Artifact t ∀hasAttribute. (PAttribute t FAttribute)
(3) PAttribute ≡ ≤ 1 hasV alue
(4) FAttribute ≡ ∀hasConstraint. (∃constraintV alue.>)
(5) ArtifactFunction ≡ ∃hasArtifact.Artifact u ∃useContext.> u ∀nonreqPart.ArtifactPartu

∀hasPartAtt. (∃hasPart.ArtifactPart u ∃hasAttribute.PAttribute)
(6) Procedure ≡ ∃hasArtifact.Artifact u ∃useContext.> u ∃hasTask. (Task u ∃hasTPos.>)
(7) Task ≡ ∃chosenV alue.(∃hasPart.ArtifactPart u ∃hasAttribute.FAttribute u

∃hasV alue.>)

Table 5: DL DAO role terminology

hasPart hasConstraint nonReqPart
hasAttribute hasArtifact hasPartAttr
hasValue useContext hasTask
hasTPos chosenValue

Table 6: DL CAO’s ABox Ac

Artifact(PEN) hasValue(INK, RED)
ArtifactPart(TUBE) hasValue(HOLD, 5)
hasPart(PEN, TUBE) hasValue(HOLD, 10)
PAttribute(INK) hasValue(MOVE, 1)
FAttribute(HOLD) hasConstraint(HOLD, 5)
FAttribute(MOVE) CompAttr(HOLD, MOVE)

Table 7: DL DAO’s ABox Ad

Artifact(PEN)
ArtifactPart(TUBE)
hasPart(PEN, TUBE)
PAttribute(INK)
FAttribute(HOLD)
FAttribute(MOVE)
ArtifactFunction(FWPEN)
hasArtifact(FWPEN, PEN)
useContext(FWPEN, WRITE)
hasPartAttr(FWPEN, (TUBE, INK))
Procedure(PWPEN)
hasArtifact(PWPEN, PEN)
useContext(PWPEN, WRITE)
Task(TWPEN)
hasTask(PWPEN, (TWPEN, 1))
chosenValue(TWPEN, (TUBE, HOLD, 10))
chosenValue(TWPEN, (TUBE, MOVE, 1))

ontologies into the work by Mokom and Kobti (2011a) and
Mokom and Kobti (2011b) to evaluate their relevance in in-
dividual, social and cultural learning of artifact capabilities.
In this study we do not consider the use of the ontologies
for goal selection. Goal selection can be driven by domain
knowledge of an artifact which have now been explicitly rep-
resented. Simulating goal evolution can provide valuable in-
sight on how humans decide on objectives to pursue.
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