
 

 

 

Efficiency Improvements for Parallel Subgraph Miners  

Abhik Ray, Lawrence B. Holder 

School of EECS, Washington State University, Pullman, WA – 99164-2752, USA 
{aray, holder}@eecs.wsu.edu 

 

 

 

 

Abstract 

Algorithms for finding frequent and/or interesting subgraphs 
in a single large graph scenario are computationally inten-
sive because of the graph isomorphism and the subgraph 
isomorphism problem. These problems are compounded by 
the size of most real-world datasets which have sizes in the 
order of 105 or 106. The SUBDUE algorithm developed by 
Cook and Holder finds the most compressing subgraph in a 
large graph. In order to perform the same task on real-world 
data sets efficiently, Cook et al. developed a parallel ap-
proach to SUBDUE called the SP-SUBDUE based on the 
MPI framework. This paper extends the work done by Cook 
et al. to improve the efficiency of MPI SUBDUE by mod-
ifying the evaluation phase. Our experiments show an 
improvement in speed-up while retaining the quality of the 
results of serial SUBDUE. The techniques that we have 
used in this study can also be used in similar algorithms 
which use static partitioning of the data and re-evaluation of 
locally interesting patterns over all the nodes of the cluster. 

 Introduction   

Graph data mining is the process of extracting patterns and 
other useful information from data represented in the form 
of graphs. One of the interesting patterns in graph data min-
ing is a maximally compressing subgraph (Cook and Holder 
2006), i.e., the subgraph of sufficiently large size that best 
compresses the input graph as per some compression 
scheme. This pattern allows us to describe the graph data 
conceptually at multiple levels. 
   Graphs most intuitively represent real world networks, 
like social networks, protein interaction networks, and 
transportation networks etc., which most often range from 
hundreds of thousands to millions of nodes and edges if not 
more. The large size of these graphs only increases the 
problems of subgraph isomorphism and graph isomor-
phism which are the key computational bottlenecks for 
graph mining.  
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   In order to make graph mining a part of main-stream data 
mining, parallel computing techniques have to be used to 
reduce the execution times. The SUBDUE system (Cook 
and Holder 1994) was developed to find the most highly 
compressing subgraphs in a single large graph. Experi-
ments show that it takes SUBDUE a very long time to 
execute on large real world datasets. Cook et al. developed 
a parallel version of SUBDUE (Cook et al. 2001) where 
they explored functional parallelism and data parallelism. 
They looked into three approaches, namely functional par-
titioning of the search space, dynamic partitioning of the 
workload and static partitioning of the dataset across nodes 
of the system. Overall they found that the static partition-
ing (SP) approach gave the best results and it required the 
least overhead of all the other techniques. Our work ex-
tends on the work done by Cook et al. in order to further 
improve the scalability and execution times of SP-
SUBDUE. 

Background 

The compression afforded by a subgraph of a larger graph 
is determined by the size of the larger graph after replacing 
each instance of the subgraph with a single vertex. The 
maximally-compressing subgraph in an input graph is of 
interest for its ability to illuminate the normative relational 
patterns in a graph. Algorithms for finding maximally 
compressing subgraphs are computationally more expen-
sive than ones for the graph transaction setting because of 
factors like subgraph isomorphism taking place in a larger 
graph and graph isomorphism occurring between larger 
subgraphs than are usually found in the graph transaction 
setting. Also if we are to compute the correct compression 
value we have to count the set of edge disjoint embeddings 
of a particular substructure.  

SUBDUE 

A few algorithms have been developed in order to perform 
this task. The SUBDUE system developed by Holder et al. 
(Cook and Holder 1994) is one such system which takes la-
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beled or unlabeled graphs as input and performs a variety of 
supervised and unsupervised learning tasks. Our focus is 
mainly on making changes to the parallel versions of unsu-
pervised learning though the changes we propose could just 
as easily be made to improve the efficiency of the paralle-
lized supervised learning algorithm.  
   SUBDUE‟s unsupervised learning task is to discover the 
most highly compressing subgraph based on Rissanen's 
MDL principle (Rissanen 1989). Discovered substructures 
are evaluated using the formula given below. 

 
Compression Value = size (Graph)/ (size (Substructure) 

+ size (CompressedGraph)) 
 

The Size function calculates the size of the graph in terms of 
description length. SUBDUE's running time is kept within 
polynomial limits (Rajappa 2003) with the use of computa-
tional constraints like using a Beam Search variant to 
traverse the search space of candidate substructures, by ex-
panding only a user-defined number of substructures, and 
keeping the size of expanded substructures to a user-defined 
limit. SUBDUE also uses an inexact graph match, where a 
substructure is considered to be an instance of another if the 
edit costs incurred in order to transform it into an isomor-
phism of the latter does not exceed a user-defined threshold. 
The SUBDUE system is also capable of using expert 
guided knowledge in the form of known substructure mod-
els that are possibly the most highly compressing ones or by 
adjusting the cost of each graph match test using graph 
match rules. It has been applied in areas such as predictive 
toxicology, network intrusion detection, earthquake analy-
sis, web structure mining, and protein data (Manocha, Cook 
and Holder 2001) (Noble and Cook 2003) (Su, Cook and 
Holder 1999). 

Parallel SUBDUE 

Our experiments have shown that on very large graphs with 
hundreds of thousands of vertices and edges, SUBDUE ex-
hibits extremely long execution times. As real-world graph 
datasets get larger, and speed-up techniques for serial 
processing algorithms are exhausted, parallelization of 
SUBDUE must be considered. The difficulty with paralle-
lizing SUBDUE as with other knowledge discovery 
systems is that they require several iterations in order to ar-
rive at results and every iteration is dependent on the output 
of the previous. Cook et al. looked at several different tech-
niques for parallelizing SUBDUE. They considered the 
distributed memory architecture over the shared memory 
architecture as shared memory architectures are often not 
large enough to store the graph data.  
   With regards to a functional parallel approach, they de-
veloped two schemes, FP-SUBDUE and DP-SUBDUE. In 
FP-SUBDUE, each processor initially discovers substruc-
tures that give a compression value more than 1.0. A master 
node keeps track of all these substructures in a global search 
queue. It stores only M (beam-width) unique substructures 
in this queue in non-decreasing order of compression value. 
Whenever a child node sends the result of an expansion, the 

master stores the substructure only if it is better than the M
th
 

substructure that it has received so far and non-isomorphic 
to all M substructures in the queue. The child nodes store 
only substructures from their search queues that appear in 
the global search queue. If a child does not have any sub-
structure left, the master gives one to it from the search 
queue of a child that has more than a threshold number of 
substructures. 
   DP-SUBDUE takes the dynamic partitioning approach. 
Here even though every processor takes as input the entire 
graph, each core only works on a disjoint set of the input 
graph and expands the area of the graph it is working on as 
required. If a processor runs out of work, it requests work 
from a neighboring processor. In order to avoid duplication 
of work among processors, a processor cannot expand a 
substructure to contain a vertex whose label index is less 
than or equal to the processor ID. 
   The third approach SP-SUBDUE performs static parti-
tioning of the data among the various processors. Each 
processor works on its subset of the data and broadcasts its 
discovered substructure to all other processors to evaluate 
on their partitions. At the end of all evaluations the master 
collects the results and reports the best substructure. The 
quality of results given by SP-SUBDUE depends directly 
on the quality of the partitions produced by the graph parti-
tioning algorithm being used. Overall SP-SUBDUE was 
found to give the best results, mostly because it had the 
least amount of communication overhead. Our work im-
proves upon SP SUBDUE to improve its performance and 
the quality of its results. 

Related Work 

While most graph mining algorithms are designed for the 
single processor environment, there are some that have been 
extended to be suitable for use in a parallel multiprocessor/ 
multicore environment. For the single large graph Kuramo-
chi and Karypis developed a frequent graph miner called 
SiGraM (Kuramochi and Karypis 2004). It contained two 
algorithms HSiGraM and VSiGraM. HSiGraM or Horizon-
tal SiGraM traversed the search space of frequent sub-
graphs in a breadth first manner. It essentially relied on a 
candidate generate and test approach. VSiGraM or Vertical 
SiGraM traversed the search space in a depth first manner. 
Reinhardt and Karypis extended this work by parallelizing 
the VSiGraM algorithm. Reinhardt et al. (Reinhardt and 
Karypis 2007) parallelized the algorithm in two ways. At a 
high level they parallelized the two pruning techniques that 
VSiGraM employs, namely checking whether the size-k 
subgraph whose expansion is the current size-(k+1) sub-
graph is actually its generating parent. The second pruning 
technique is the calculation of frequency for the size-(k+1) 
candidate subgraph. The parallelization also takes place 
during the recursive call to the function that extends size-i 
subgraphs to size-(i+1). At a finer level the authors even 
parallelize the generation of non-isomorphic size-(i+1) can-
didate subgraphs from a given size-i frequent subgraph.  
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According to the authors the coarser parallelization gave 
consistently better performance as opposed to the finer pa-
rallelization which showed decreased performance as more 
graphs were added. While our problem is similar to the 
problem solved by VSiGraM, our approach is slightly dif-
ferent. We take the approach of statically partitioning the 
input graph among the various processors of the system, 
whereas in ParVSiGraM, the input graph is not explicitly 
partitioned. The authors have focused their efforts on func-
tional partitioning. Moreover, SP-SUBDUE makes sure that 
the child nodes do not have to send data back and forth as 
they evaluate portions of the graph not present in their local 
partition. 
   There has also been some work in extending graph trans-
action based graph miner algorithms. Buehrer et al. in 
(Buehrer et al. 2005) designed a parallel approach to gSpan. 
They evaluated level-wise partitioning and dynamic parti-
tioning methods in order to control the granularity of tasks. 
They also evaluated three queuing models, namely, global 
queues, hierarchical queues and distributed queues. They 

showed that dynamic partitioning and distributed queues 
give best performance. Meinl et al. (Meinl et al. 2006) dis-
cussed a parallel version of MofA and gSpan. Fatta et al. 
(Di Fatta and Berthold 2006) also discussed a distributed 
approach to frequent subgraph mining using partitioning of 
the search space, distributed task queues with dynamic load 
balancing and a peer-to-peer communication framework. 

Approach 

The efficiency improvements we make are to the Static Par-
titioning version of SUBDUE, which we here call SP-
SUBDUE. In SP-SUBDUE, the child nodes would work on 
their local partition. Once they had discovered the substruc-
tures, they would report the best one back to the master. As 
the master received discovered substructures from the child-
ren, it would check to see if this substructure was 
isomorphic to a substructure already in the queue of re-
ceived substructures. Once the master had received 
substructures back from all the children, it would sequen-
tially send out each substructure on its queue of discovered 
substructures to all but the child who had discovered it. The 
child nodes would then do a subgraph isomorphism test to 
find all instances of the substructure sent to them for eval-
uation on their local partitions and report back to the master 
with the evaluated compression value of the substructure on 
their local partition. The master would simply add up the 
compression values for that substructure from all the parti-
tions and store it in a list of evaluated substructures. It 
would repeat this procedure for all the substructures on its 
discovered list. At the end it would report the best M sub-
structures on its evaluated list, where M is specified by the 
user.  
   We make the following improvements. Initially as the 
master receives substructures from the children, it checks in 
its list of previously discovered substructures to see if the 
current substructure is isomorphic to any in the list. If it is 
then it stores the ID of the node that first found the sub-
structure along with the substructure (Line 9d). At the end 
of the discovery phase the discovered list consists of the re-
ceived substructures along with the ID of the node that first 
found it. The master then sends a substructure for evalua-
tion only to the children that sent a different best 
substructure than the one being evaluated currently (Line 
10a-i). For the ones that reported the same best substructure 
the master simply adds up the count of instances discovered 
by that node for this substructure (Line 10a-ii). The master 
uses the size of the partitions of every node to compute the 
final compression value (Line 10c). This value is the actual 
compression value that would be discovered on the com-
plete input graph taking into account the information lost 
across the graph's partition boundaries. Whenever a child 
receives a substructure for evaluation, it performs graph 
matching to see if it is present in its list of locally discov-
ered substructures (Line 5 – Child). Only if the substructure 
is not present in this list does the child make a subgraph 
isomorphism call. The intuition behind this being that if the 
graph partitioning algorithms do a good job, and the  

Figure 1.   SP-SUBDUE-2 algorithm 

SP-SUBDUE2 Master: 
Input: M, the number of best substructures to be displayed 

Output: B, the set of best substructures 

1) begin 

2) C =   //the list of candidate substructures 

3) P =   //the list of graph partition sizes 

4) N =  //the list of num instances of substructures 

5) T =  //the list of #. of recvd. Substructures 

6) I =  //the list of node IDs that first discover a substructure 

7) S =  // the list of substructure sizes 
8) for every child node do 

a) Pi = Size of partition received from child i 

9) for every child node do 
a) Ci = Best substructure received from child i 

b) Ti  = Number of instances of child i 

c) Si = Size of substructure received. 
d) Ii = ID of node first discovering this substructure 

10) for every substructure Ci do 

a) for every  j in (1 to #nodes)  do 

i) if (Ii  Ij and i  j) send Ci to node j for evaluation 

ii) else Ni = Ni + Tj 

b) for every j in (1 to #nodes) do 

i) if (Ii  Ij and i  j)  

(1) Ni = Ni + Received number of instances and 

value for Ci from node j 
c) calculate value for Ci based on Ni, Si and Pi 

11) B = M best substructures from C 

12) output B 
 

SP-SUBDUE2 Child: 

Input: Graph Partition Gi 

Output: Best substructure, Evaluation of substructure 

1) begin 

2) discover local best substructures and store in L 
3) send only best substructure to master 

4) receive substructure cx from master for evaluation on local parti-

tion 
5) compare cx to the substructures in L. If any match return the value 

and number of instances of that substructure 

6) else find all instances of cx in local partition and calculate value 
7) return evaluation to master 
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partitions resemble each other to a great degree, the sub-
structures discovered by the child nodes will be similar 
even though they may vary in their compression value. If so 
then we would be saving on subgraph isomorphism calls. 
The SP-SUBDUE-2 algorithm is given in Fig 1. 

Experiments 

In our experiments we use an IBM Model 1350 HPC made 
up of 164 Idataplex server nodes with 2 physical proces-
sors. Each processor has six cores each making up a total of 
12 cores per node operating at 2.66 Ghz.  The nodes indivi-
dually have 24 GB RAM. They use 40 Gb/s Quad Data 
Rate Mellanox Infiniband in 100% non blocking configura-
tion. We seek to test the scalability of SP-SUBDUE-2 and 
demonstrate that it scales better than SP-SUBDUE. We also 
show that SP-SUBDUE-2 gives the same accuracy as serial 
SUBDUE after evaluating a smaller number of substruc-
tures and taking much less time. 

Scalability 

To perform the scalability testing, we create a synthetic 
graph with a particular subgraph embedded in it. The algo-
rithm used to create the artificial graph is called “Subgen” 
and is available from the author. “Subgen” creates graphs of 
a desired size and with a desired number of embeddings of 
a provided subgraph, along with additional structure to meet 
user-specified parameters about graph properties. The in-
stances of that subgraph comprise 70% of the artificial 
graph. We test scalability by doubling the graph size, keep-
ing the same percentage of subgraph instances and doubling 
the number of processors. The graphs are partitioned using 
the METIS algorithm developed by Karypis et al. (Karypis 
and Kumar 1998). METIS works using a multi-level graph 
partitioning scheme. The technique used by METIS is to 
first reduce the size of the graph, partition this smaller 
graph and then increase the size of the smaller graph to get 
the actual partitions.  
   The subgraph that we have chosen is given in Figure 2. 
Our synthetic graph consists of only this graph as our graph 
generator program can handle only one embedded substruc-
ture at the moment. The distribution of the various node 
labels and edge labels in the graph are given as follows. 

Distribution of vertex labels: 

Speed-up comparison

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 127

Number of cores

Sp
ee

d-
up

Speed-up new

Speed-up old  

 
 
a) soldier - 0.15 
b) scientist - 0.05 
c) terrorist - 0.1 
d) civilian – 0.7 
 
Distribution of edge labels: 
a) friend - 0.65 
b) foe - 0.35 

This particular distribution is chosen to reflect a scenario 
where there are more „civilians‟ than others. The distribu-
tions of the edge labels roughly reflect the distribution of 
the edge labels inside the subgraph. We ran SP-SUBDUE-2 
on the graphs, where the graphs as well as the cores in the 
system double in size, keeping the distributions the same. 

TABLE I.  SCALABILITY OF SP-SUBDUE-2 ON  SYNTHETIC GRAPH 

No. 

cores 

Results 

Graph Size Time Similarity Compression 

1 750 v, 1550 e 16s 100.00% 2.19973 

2 1500 v, 3100 e 14s 100.00% 1.75519 

4 3000 v, 6200 e 8s 100.00% 1.59308 

8 6000 v, 12400 e 13s 100.00% 1.49339 

16 12000 v, 24800 e 8s 100.00% 1.51554 

32 24000 v, 49600 e 14s 100.00% 1.47269 

 
    
 Our experimental results as given in Table I show us that in 
terms of raw execution (wall-clock) time SP-SUBDUE-2 
gives similar execution times as the graph size and number 
of cores is increased, and finds the substructure embedded 
in the large graph. We were unable to go beyond 32 cores 
because of the infeasible times taken to generate the syn-
thetic graphs beyond the size of the graph used on 32 cores.  
   We performed a second scalability test by generating a 
graph with the same properties as above, only having 
24,000 vertices and 49,600 edges. We made partitions of 
this graph for 1, 2, 4, 8, 16, 32, 64 and 127 child cores. We 
did not test for 128 child cores as we needed one core for 
the master and were therefore unable to find a multiple for 
129 total nodes. We then ran experiments using these set-
tings for both the new version as well as the old version of 
SP-SUBDUE. Our results given in Fig 3 and 4 show that 
while the old version gives speed-up (seri-
al_time/parallel_time) and efficiency (speed-up/#nodes) 
almost similar to the new, it begins falling off on both  

Figure 3.   Speed-up of SP-SUBDUE-2 vs SP-SUBDUE Figure 2.   Substructure  embedded in synthetic graph 
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curves earlier than the new version. In our calculations we 
use the execution time taken from SUBDUE in seconds. 
We measure the time based on when the master process 
terminates. 
   From our experiments we see that while SP-SUBDUE-2 
offers only a slight improvement in terms of execution time, 
it shows improved speed-up and efficiency. This happens 
because SP-SUBDUE saved on data communication times 
by simply adding up the values sent after evaluation for a 
particular substructure to get its final value. SP-SUBDUE-2 
incurs these communication costs, due to requesting more 
data like the size of the local partitions. However the im-
provements that we have made not only compensate for this 
overhead, but allow the algorithm to now calculate the true 
compression value as well as the correct number of in-
stances (the implementation of SP-SUBDUE made an extra 
addition while computing number of instances). Thus in 
terms of quality too it gives better results. Figures 3 and 4 
show the speed-up and efficiency comparison between SP-
SUBDUE (old) and SP-SUBDUE-2 (new). The speed-up of 
SP-SUBDUE-2 as well as SP-SUBDUE is superlinear be-
cause the run-time of SUBDUE is nonlinear in terms of the 
graph size. As each core is simply running SUBDUE on a 
smaller graph the time taken by SP-SUBDUE would be less 
than SUBDUE (Cook et al. 2001). 

Quality 

The quality of substructures is measured in terms of similar-
ity to the substructures discovered by serial SUBDUE. The 
quality of the substructures returned by SP-SUBDUE 
should improve with respect to the compression value up to 
a certain limit. If the partitions get too small however the 
quality will decrease since the individual nodes would nev-
er see subgraphs larger than the size of the individual 
partitions even if these subgraphs produced better compres-
sion. In order to test quality, with increase in partitions for 
very large graphs, we use a graph containing nuclear smug-
gling events and links between them.  The original nuclear 
smuggling dataset contains reports of nuclear smuggling 
events in Russia (McKay, Woessner and Roule 2001) from 
which Cook et al. created a graph (Cook et al 2009).  Our 
experimental methodology is as follows. We provide serial 
SUBDUE with a single large graph created from n-copies 
of the Nuclear Smuggling graph, where n = 2, 4, 8, 16, 32, 
64, 127. To SP-SUBDUE-2 we provide the n-copy of the 
graph when we use „n‟ child nodes and one master node.  
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Every node has its own copy of the Nuclear Smuggling 
graph. We force the algorithms to consider a larger sub-
structure to illustrate the difference in run-times between 
serial SUBDUE and SP-SUBDUE-2. We observe that the 
number of substructures that serial SUBDUE needs to eva-
luate is larger than the number of substructures that SP-
SUBDUE-2 needs to evaluate in order to discover the same 
best substructure. Moreover the time taken by serial 
SUBDUE to analyze the increasingly larger graphs follows 
an exponential growth curve (Fig. 5), whereas the time tak-
en by SP-SUBDUE-2 remains relatively constant (Fig. 6) 
with a slight increase due to the communication required 
when switching from using the cores on the same node to 
cores on separate nodes (this was verified by using 3 cores 
11 partitions and 11 cores and 3 partitions respectively). 
The limit on the number of substructures was chosen using 
the formula:  

))_(*(_# subdesiredsizebeamsubsinitl    

where l = limit of substructures expanded, 
          #init_subs = number of initial substructures, 

    beam = beam width, and 
          size(desired_sub) = size of the desired substructure. 
The expression was formulated to force the algorithm to 
consider substructures of the desired size. The initial sub-
structures considered by the algorithm are all vertices 
having a count of at least 2. After the algorithm has eva-
luated these substructures it would then start expanding 
them by one node. After each pass through the beam, the 
best substructure would expand by one edge. Hence the 
number of substructures evaluated by the algorithm before 
it reaches a substructure of the desired size would be at 
most: (beam*size(desired-sub)) . 

Results and Discussions 

From our experiments we see that SP-SUBDUE-2 gives 
better speed-up and efficiency than SP-SUBDUE. Table I 
shows that the time taken by SP-SUBDUE-2 remains the 
same as the number of cores increases proportionally with 
the size of the graph. From Fig. 3 and 4 we see that the 
speed-up and efficiency respectively of SP-SUBDUE-2 is 
better than SP-SUBDUE as the curve for SP-SUBDUE falls 
off earlier in both cases than the curves for SP-SUBDUE-2. 
  

Figure 5.   Time taken by serial SUBDUE to discover 

(6v,5e) substructure setting no. of substructures evaluated  

to 2036  

Figure 4.   Efficiency of SP-SUBDUE-2  vs SP-SUBDUE 
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From Figs. 5 and 6 we can see that serial SUBDUE needs to 
expand significantly more substructures in order to reach 
the same conclusion as SP-SUBDUE-2. Consequently its 
execution time increases to prohibitive limits as the graph 
size increases. 

Conclusions 

Our scalability tests show clearly that SP-SUBDUE-2 out-
performs SP-SUBDUE. We would have liked to test the 
quality of results produced by SP-SUBDUE-2 even more 
thoroughly by actually partitioning a real graph dataset; 
however we could not do this due to the lack of availability 
of labeled graphs that could be partitioned using METIS. 
We will investigate this issue further. Future work also in-
cludes extending these improvements or designing new 
ones for FP-SUBDUE and DP-SUBDUE, and to the super-
vised learning scenario. The scheme that we have outlined 
in this paper can be applied to any frequent subgraph miner 
or maximally-compressing subgraph algorithm that uses 
static data partitioning. The idea is that if the partitions pro-
duced are good, not much information will be lost due to 
edge cuts. An aggregation of local best substructures would 
then be a very close approximation to the actual result on 
the unpartitioned data. An evaluation of the local best sub-
structure of one child by the other children would further 
increase the accuracy. The evaluation and aggregation can 
be computed intelligently using some additional memory at 
the master and child nodes in order to reduce the time tak-
en. While to our knowledge SP-SUBDUE is the only 
parallel graph miner that uses static partitioning of the input 
data, ones designed in future can take advantage of our 
scheme. 
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