

Efficiency Improvements for Parallel Subgraph Miners

Abhik Ray, Lawrence B. Holder

School of EECS, Washington State University, Pullman, WA – 99164-2752, USA
{aray, holder}@eecs.wsu.edu

Abstract

Algorithms for finding frequent and/or interesting subgraphs
in a single large graph scenario are computationally inten-
sive because of the graph isomorphism and the subgraph
isomorphism problem. These problems are compounded by
the size of most real-world datasets which have sizes in the
order of 105 or 106. The SUBDUE algorithm developed by
Cook and Holder finds the most compressing subgraph in a
large graph. In order to perform the same task on real-world
data sets efficiently, Cook et al. developed a parallel ap-
proach to SUBDUE called the SP-SUBDUE based on the
MPI framework. This paper extends the work done by Cook
et al. to improve the efficiency of MPI SUBDUE by mod-
ifying the evaluation phase. Our experiments show an
improvement in speed-up while retaining the quality of the
results of serial SUBDUE. The techniques that we have
used in this study can also be used in similar algorithms
which use static partitioning of the data and re-evaluation of
locally interesting patterns over all the nodes of the cluster.

 Introduction

Graph data mining is the process of extracting patterns and
other useful information from data represented in the form
of graphs. One of the interesting patterns in graph data min-
ing is a maximally compressing subgraph (Cook and Holder
2006), i.e., the subgraph of sufficiently large size that best
compresses the input graph as per some compression
scheme. This pattern allows us to describe the graph data
conceptually at multiple levels.
 Graphs most intuitively represent real world networks,
like social networks, protein interaction networks, and
transportation networks etc., which most often range from
hundreds of thousands to millions of nodes and edges if not
more. The large size of these graphs only increases the
problems of subgraph isomorphism and graph isomor-
phism which are the key computational bottlenecks for
graph mining.

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 In order to make graph mining a part of main-stream data
mining, parallel computing techniques have to be used to
reduce the execution times. The SUBDUE system (Cook
and Holder 1994) was developed to find the most highly
compressing subgraphs in a single large graph. Experi-
ments show that it takes SUBDUE a very long time to
execute on large real world datasets. Cook et al. developed
a parallel version of SUBDUE (Cook et al. 2001) where
they explored functional parallelism and data parallelism.
They looked into three approaches, namely functional par-
titioning of the search space, dynamic partitioning of the
workload and static partitioning of the dataset across nodes
of the system. Overall they found that the static partition-
ing (SP) approach gave the best results and it required the
least overhead of all the other techniques. Our work ex-
tends on the work done by Cook et al. in order to further
improve the scalability and execution times of SP-
SUBDUE.

Background

The compression afforded by a subgraph of a larger graph
is determined by the size of the larger graph after replacing
each instance of the subgraph with a single vertex. The
maximally-compressing subgraph in an input graph is of
interest for its ability to illuminate the normative relational
patterns in a graph. Algorithms for finding maximally
compressing subgraphs are computationally more expen-
sive than ones for the graph transaction setting because of
factors like subgraph isomorphism taking place in a larger
graph and graph isomorphism occurring between larger
subgraphs than are usually found in the graph transaction
setting. Also if we are to compute the correct compression
value we have to count the set of edge disjoint embeddings
of a particular substructure.

SUBDUE

A few algorithms have been developed in order to perform
this task. The SUBDUE system developed by Holder et al.
(Cook and Holder 1994) is one such system which takes la-

74

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

beled or unlabeled graphs as input and performs a variety of
supervised and unsupervised learning tasks. Our focus is
mainly on making changes to the parallel versions of unsu-
pervised learning though the changes we propose could just
as easily be made to improve the efficiency of the paralle-
lized supervised learning algorithm.
 SUBDUE‟s unsupervised learning task is to discover the
most highly compressing subgraph based on Rissanen's
MDL principle (Rissanen 1989). Discovered substructures
are evaluated using the formula given below.

Compression Value = size (Graph)/ (size (Substructure)

+ size (CompressedGraph))

The Size function calculates the size of the graph in terms of
description length. SUBDUE's running time is kept within
polynomial limits (Rajappa 2003) with the use of computa-
tional constraints like using a Beam Search variant to
traverse the search space of candidate substructures, by ex-
panding only a user-defined number of substructures, and
keeping the size of expanded substructures to a user-defined
limit. SUBDUE also uses an inexact graph match, where a
substructure is considered to be an instance of another if the
edit costs incurred in order to transform it into an isomor-
phism of the latter does not exceed a user-defined threshold.
The SUBDUE system is also capable of using expert
guided knowledge in the form of known substructure mod-
els that are possibly the most highly compressing ones or by
adjusting the cost of each graph match test using graph
match rules. It has been applied in areas such as predictive
toxicology, network intrusion detection, earthquake analy-
sis, web structure mining, and protein data (Manocha, Cook
and Holder 2001) (Noble and Cook 2003) (Su, Cook and
Holder 1999).

Parallel SUBDUE

Our experiments have shown that on very large graphs with
hundreds of thousands of vertices and edges, SUBDUE ex-
hibits extremely long execution times. As real-world graph
datasets get larger, and speed-up techniques for serial
processing algorithms are exhausted, parallelization of
SUBDUE must be considered. The difficulty with paralle-
lizing SUBDUE as with other knowledge discovery
systems is that they require several iterations in order to ar-
rive at results and every iteration is dependent on the output
of the previous. Cook et al. looked at several different tech-
niques for parallelizing SUBDUE. They considered the
distributed memory architecture over the shared memory
architecture as shared memory architectures are often not
large enough to store the graph data.
 With regards to a functional parallel approach, they de-
veloped two schemes, FP-SUBDUE and DP-SUBDUE. In
FP-SUBDUE, each processor initially discovers substruc-
tures that give a compression value more than 1.0. A master
node keeps track of all these substructures in a global search
queue. It stores only M (beam-width) unique substructures
in this queue in non-decreasing order of compression value.
Whenever a child node sends the result of an expansion, the

master stores the substructure only if it is better than the M
th

substructure that it has received so far and non-isomorphic
to all M substructures in the queue. The child nodes store
only substructures from their search queues that appear in
the global search queue. If a child does not have any sub-
structure left, the master gives one to it from the search
queue of a child that has more than a threshold number of
substructures.
 DP-SUBDUE takes the dynamic partitioning approach.
Here even though every processor takes as input the entire
graph, each core only works on a disjoint set of the input
graph and expands the area of the graph it is working on as
required. If a processor runs out of work, it requests work
from a neighboring processor. In order to avoid duplication
of work among processors, a processor cannot expand a
substructure to contain a vertex whose label index is less
than or equal to the processor ID.
 The third approach SP-SUBDUE performs static parti-
tioning of the data among the various processors. Each
processor works on its subset of the data and broadcasts its
discovered substructure to all other processors to evaluate
on their partitions. At the end of all evaluations the master
collects the results and reports the best substructure. The
quality of results given by SP-SUBDUE depends directly
on the quality of the partitions produced by the graph parti-
tioning algorithm being used. Overall SP-SUBDUE was
found to give the best results, mostly because it had the
least amount of communication overhead. Our work im-
proves upon SP SUBDUE to improve its performance and
the quality of its results.

Related Work

While most graph mining algorithms are designed for the
single processor environment, there are some that have been
extended to be suitable for use in a parallel multiprocessor/
multicore environment. For the single large graph Kuramo-
chi and Karypis developed a frequent graph miner called
SiGraM (Kuramochi and Karypis 2004). It contained two
algorithms HSiGraM and VSiGraM. HSiGraM or Horizon-
tal SiGraM traversed the search space of frequent sub-
graphs in a breadth first manner. It essentially relied on a
candidate generate and test approach. VSiGraM or Vertical
SiGraM traversed the search space in a depth first manner.
Reinhardt and Karypis extended this work by parallelizing
the VSiGraM algorithm. Reinhardt et al. (Reinhardt and
Karypis 2007) parallelized the algorithm in two ways. At a
high level they parallelized the two pruning techniques that
VSiGraM employs, namely checking whether the size-k
subgraph whose expansion is the current size-(k+1) sub-
graph is actually its generating parent. The second pruning
technique is the calculation of frequency for the size-(k+1)
candidate subgraph. The parallelization also takes place
during the recursive call to the function that extends size-i
subgraphs to size-(i+1). At a finer level the authors even
parallelize the generation of non-isomorphic size-(i+1) can-
didate subgraphs from a given size-i frequent subgraph.

75

According to the authors the coarser parallelization gave
consistently better performance as opposed to the finer pa-
rallelization which showed decreased performance as more
graphs were added. While our problem is similar to the
problem solved by VSiGraM, our approach is slightly dif-
ferent. We take the approach of statically partitioning the
input graph among the various processors of the system,
whereas in ParVSiGraM, the input graph is not explicitly
partitioned. The authors have focused their efforts on func-
tional partitioning. Moreover, SP-SUBDUE makes sure that
the child nodes do not have to send data back and forth as
they evaluate portions of the graph not present in their local
partition.
 There has also been some work in extending graph trans-
action based graph miner algorithms. Buehrer et al. in
(Buehrer et al. 2005) designed a parallel approach to gSpan.
They evaluated level-wise partitioning and dynamic parti-
tioning methods in order to control the granularity of tasks.
They also evaluated three queuing models, namely, global
queues, hierarchical queues and distributed queues. They

showed that dynamic partitioning and distributed queues
give best performance. Meinl et al. (Meinl et al. 2006) dis-
cussed a parallel version of MofA and gSpan. Fatta et al.
(Di Fatta and Berthold 2006) also discussed a distributed
approach to frequent subgraph mining using partitioning of
the search space, distributed task queues with dynamic load
balancing and a peer-to-peer communication framework.

Approach

The efficiency improvements we make are to the Static Par-
titioning version of SUBDUE, which we here call SP-
SUBDUE. In SP-SUBDUE, the child nodes would work on
their local partition. Once they had discovered the substruc-
tures, they would report the best one back to the master. As
the master received discovered substructures from the child-
ren, it would check to see if this substructure was
isomorphic to a substructure already in the queue of re-
ceived substructures. Once the master had received
substructures back from all the children, it would sequen-
tially send out each substructure on its queue of discovered
substructures to all but the child who had discovered it. The
child nodes would then do a subgraph isomorphism test to
find all instances of the substructure sent to them for eval-
uation on their local partitions and report back to the master
with the evaluated compression value of the substructure on
their local partition. The master would simply add up the
compression values for that substructure from all the parti-
tions and store it in a list of evaluated substructures. It
would repeat this procedure for all the substructures on its
discovered list. At the end it would report the best M sub-
structures on its evaluated list, where M is specified by the
user.
 We make the following improvements. Initially as the
master receives substructures from the children, it checks in
its list of previously discovered substructures to see if the
current substructure is isomorphic to any in the list. If it is
then it stores the ID of the node that first found the sub-
structure along with the substructure (Line 9d). At the end
of the discovery phase the discovered list consists of the re-
ceived substructures along with the ID of the node that first
found it. The master then sends a substructure for evalua-
tion only to the children that sent a different best
substructure than the one being evaluated currently (Line
10a-i). For the ones that reported the same best substructure
the master simply adds up the count of instances discovered
by that node for this substructure (Line 10a-ii). The master
uses the size of the partitions of every node to compute the
final compression value (Line 10c). This value is the actual
compression value that would be discovered on the com-
plete input graph taking into account the information lost
across the graph's partition boundaries. Whenever a child
receives a substructure for evaluation, it performs graph
matching to see if it is present in its list of locally discov-
ered substructures (Line 5 – Child). Only if the substructure
is not present in this list does the child make a subgraph
isomorphism call. The intuition behind this being that if the
graph partitioning algorithms do a good job, and the

Figure 1. SP-SUBDUE-2 algorithm

SP-SUBDUE2 Master:
Input: M, the number of best substructures to be displayed

Output: B, the set of best substructures

1) begin

2) C =  //the list of candidate substructures

3) P =  //the list of graph partition sizes

4) N =  //the list of num instances of substructures

5) T =  //the list of #. of recvd. Substructures

6) I =  //the list of node IDs that first discover a substructure

7) S =  // the list of substructure sizes
8) for every child node do

a) Pi = Size of partition received from child i

9) for every child node do
a) Ci = Best substructure received from child i

b) Ti = Number of instances of child i

c) Si = Size of substructure received.
d) Ii = ID of node first discovering this substructure

10) for every substructure Ci do

a) for every j in (1 to #nodes) do

i) if (Ii  Ij and i  j) send Ci to node j for evaluation

ii) else Ni = Ni + Tj

b) for every j in (1 to #nodes) do

i) if (Ii  Ij and i  j)

(1) Ni = Ni + Received number of instances and

value for Ci from node j
c) calculate value for Ci based on Ni, Si and Pi

11) B = M best substructures from C

12) output B

SP-SUBDUE2 Child:

Input: Graph Partition Gi

Output: Best substructure, Evaluation of substructure

1) begin

2) discover local best substructures and store in L
3) send only best substructure to master

4) receive substructure cx from master for evaluation on local parti-

tion
5) compare cx to the substructures in L. If any match return the value

and number of instances of that substructure

6) else find all instances of cx in local partition and calculate value
7) return evaluation to master

76

partitions resemble each other to a great degree, the sub-
structures discovered by the child nodes will be similar
even though they may vary in their compression value. If so
then we would be saving on subgraph isomorphism calls.
The SP-SUBDUE-2 algorithm is given in Fig 1.

Experiments

In our experiments we use an IBM Model 1350 HPC made
up of 164 Idataplex server nodes with 2 physical proces-
sors. Each processor has six cores each making up a total of
12 cores per node operating at 2.66 Ghz. The nodes indivi-
dually have 24 GB RAM. They use 40 Gb/s Quad Data
Rate Mellanox Infiniband in 100% non blocking configura-
tion. We seek to test the scalability of SP-SUBDUE-2 and
demonstrate that it scales better than SP-SUBDUE. We also
show that SP-SUBDUE-2 gives the same accuracy as serial
SUBDUE after evaluating a smaller number of substruc-
tures and taking much less time.

Scalability

To perform the scalability testing, we create a synthetic
graph with a particular subgraph embedded in it. The algo-
rithm used to create the artificial graph is called “Subgen”
and is available from the author. “Subgen” creates graphs of
a desired size and with a desired number of embeddings of
a provided subgraph, along with additional structure to meet
user-specified parameters about graph properties. The in-
stances of that subgraph comprise 70% of the artificial
graph. We test scalability by doubling the graph size, keep-
ing the same percentage of subgraph instances and doubling
the number of processors. The graphs are partitioned using
the METIS algorithm developed by Karypis et al. (Karypis
and Kumar 1998). METIS works using a multi-level graph
partitioning scheme. The technique used by METIS is to
first reduce the size of the graph, partition this smaller
graph and then increase the size of the smaller graph to get
the actual partitions.
 The subgraph that we have chosen is given in Figure 2.
Our synthetic graph consists of only this graph as our graph
generator program can handle only one embedded substruc-
ture at the moment. The distribution of the various node
labels and edge labels in the graph are given as follows.

Distribution of vertex labels:

Speed-up comparison

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 127

Number of cores

Sp
ee

d-
up

Speed-up new

Speed-up old

a) soldier - 0.15
b) scientist - 0.05
c) terrorist - 0.1
d) civilian – 0.7

Distribution of edge labels:
a) friend - 0.65
b) foe - 0.35

This particular distribution is chosen to reflect a scenario
where there are more „civilians‟ than others. The distribu-
tions of the edge labels roughly reflect the distribution of
the edge labels inside the subgraph. We ran SP-SUBDUE-2
on the graphs, where the graphs as well as the cores in the
system double in size, keeping the distributions the same.

TABLE I. SCALABILITY OF SP-SUBDUE-2 ON SYNTHETIC GRAPH

No.

cores

Results

Graph Size Time Similarity Compression

1 750 v, 1550 e 16s 100.00% 2.19973

2 1500 v, 3100 e 14s 100.00% 1.75519

4 3000 v, 6200 e 8s 100.00% 1.59308

8 6000 v, 12400 e 13s 100.00% 1.49339

16 12000 v, 24800 e 8s 100.00% 1.51554

32 24000 v, 49600 e 14s 100.00% 1.47269

 Our experimental results as given in Table I show us that in
terms of raw execution (wall-clock) time SP-SUBDUE-2
gives similar execution times as the graph size and number
of cores is increased, and finds the substructure embedded
in the large graph. We were unable to go beyond 32 cores
because of the infeasible times taken to generate the syn-
thetic graphs beyond the size of the graph used on 32 cores.
 We performed a second scalability test by generating a
graph with the same properties as above, only having
24,000 vertices and 49,600 edges. We made partitions of
this graph for 1, 2, 4, 8, 16, 32, 64 and 127 child cores. We
did not test for 128 child cores as we needed one core for
the master and were therefore unable to find a multiple for
129 total nodes. We then ran experiments using these set-
tings for both the new version as well as the old version of
SP-SUBDUE. Our results given in Fig 3 and 4 show that
while the old version gives speed-up (seri-
al_time/parallel_time) and efficiency (speed-up/#nodes)
almost similar to the new, it begins falling off on both

Figure 3. Speed-up of SP-SUBDUE-2 vs SP-SUBDUE Figure 2. Substructure embedded in synthetic graph

77

Efficiency comparison

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64 127

Number of cores

Ef
fic

ie
nc

y

Efficiency new

Efficiency old

curves earlier than the new version. In our calculations we
use the execution time taken from SUBDUE in seconds.
We measure the time based on when the master process
terminates.
 From our experiments we see that while SP-SUBDUE-2
offers only a slight improvement in terms of execution time,
it shows improved speed-up and efficiency. This happens
because SP-SUBDUE saved on data communication times
by simply adding up the values sent after evaluation for a
particular substructure to get its final value. SP-SUBDUE-2
incurs these communication costs, due to requesting more
data like the size of the local partitions. However the im-
provements that we have made not only compensate for this
overhead, but allow the algorithm to now calculate the true
compression value as well as the correct number of in-
stances (the implementation of SP-SUBDUE made an extra
addition while computing number of instances). Thus in
terms of quality too it gives better results. Figures 3 and 4
show the speed-up and efficiency comparison between SP-
SUBDUE (old) and SP-SUBDUE-2 (new). The speed-up of
SP-SUBDUE-2 as well as SP-SUBDUE is superlinear be-
cause the run-time of SUBDUE is nonlinear in terms of the
graph size. As each core is simply running SUBDUE on a
smaller graph the time taken by SP-SUBDUE would be less
than SUBDUE (Cook et al. 2001).

Quality

The quality of substructures is measured in terms of similar-
ity to the substructures discovered by serial SUBDUE. The
quality of the substructures returned by SP-SUBDUE
should improve with respect to the compression value up to
a certain limit. If the partitions get too small however the
quality will decrease since the individual nodes would nev-
er see subgraphs larger than the size of the individual
partitions even if these subgraphs produced better compres-
sion. In order to test quality, with increase in partitions for
very large graphs, we use a graph containing nuclear smug-
gling events and links between them. The original nuclear
smuggling dataset contains reports of nuclear smuggling
events in Russia (McKay, Woessner and Roule 2001) from
which Cook et al. created a graph (Cook et al 2009). Our
experimental methodology is as follows. We provide serial
SUBDUE with a single large graph created from n-copies
of the Nuclear Smuggling graph, where n = 2, 4, 8, 16, 32,
64, 127. To SP-SUBDUE-2 we provide the n-copy of the
graph when we use „n‟ child nodes and one master node.

Time(sec) vs No. of copies

0

50000

100000

150000

200000

250000

300000

350000

2 4 8 16 32 64 127

No. of copies

Ti
m

e
(s

ec
s)

Time (secs)

Every node has its own copy of the Nuclear Smuggling
graph. We force the algorithms to consider a larger sub-
structure to illustrate the difference in run-times between
serial SUBDUE and SP-SUBDUE-2. We observe that the
number of substructures that serial SUBDUE needs to eva-
luate is larger than the number of substructures that SP-
SUBDUE-2 needs to evaluate in order to discover the same
best substructure. Moreover the time taken by serial
SUBDUE to analyze the increasingly larger graphs follows
an exponential growth curve (Fig. 5), whereas the time tak-
en by SP-SUBDUE-2 remains relatively constant (Fig. 6)
with a slight increase due to the communication required
when switching from using the cores on the same node to
cores on separate nodes (this was verified by using 3 cores
11 partitions and 11 cores and 3 partitions respectively).
The limit on the number of substructures was chosen using
the formula:

))_(*(_# subdesiredsizebeamsubsinitl 

where l = limit of substructures expanded,
 #init_subs = number of initial substructures,

 beam = beam width, and
 size(desired_sub) = size of the desired substructure.
The expression was formulated to force the algorithm to
consider substructures of the desired size. The initial sub-
structures considered by the algorithm are all vertices
having a count of at least 2. After the algorithm has eva-
luated these substructures it would then start expanding
them by one node. After each pass through the beam, the
best substructure would expand by one edge. Hence the
number of substructures evaluated by the algorithm before
it reaches a substructure of the desired size would be at
most: (beam*size(desired-sub)) .

Results and Discussions

From our experiments we see that SP-SUBDUE-2 gives
better speed-up and efficiency than SP-SUBDUE. Table I
shows that the time taken by SP-SUBDUE-2 remains the
same as the number of cores increases proportionally with
the size of the graph. From Fig. 3 and 4 we see that the
speed-up and efficiency respectively of SP-SUBDUE-2 is
better than SP-SUBDUE as the curve for SP-SUBDUE falls
off earlier in both cases than the curves for SP-SUBDUE-2.

Figure 5. Time taken by serial SUBDUE to discover

(6v,5e) substructure setting no. of substructures evaluated

to 2036

Figure 4. Efficiency of SP-SUBDUE-2 vs SP-SUBDUE

78

Time(sec) vs No. of cores

0

100

200

300

400

500

600

700

2 4 8 16 32 64 127

No. of cores

T
im

e
(s

ec
s)

Time(sec)

From Figs. 5 and 6 we can see that serial SUBDUE needs to
expand significantly more substructures in order to reach
the same conclusion as SP-SUBDUE-2. Consequently its
execution time increases to prohibitive limits as the graph
size increases.

Conclusions

Our scalability tests show clearly that SP-SUBDUE-2 out-
performs SP-SUBDUE. We would have liked to test the
quality of results produced by SP-SUBDUE-2 even more
thoroughly by actually partitioning a real graph dataset;
however we could not do this due to the lack of availability
of labeled graphs that could be partitioned using METIS.
We will investigate this issue further. Future work also in-
cludes extending these improvements or designing new
ones for FP-SUBDUE and DP-SUBDUE, and to the super-
vised learning scenario. The scheme that we have outlined
in this paper can be applied to any frequent subgraph miner
or maximally-compressing subgraph algorithm that uses
static data partitioning. The idea is that if the partitions pro-
duced are good, not much information will be lost due to
edge cuts. An aggregation of local best substructures would
then be a very close approximation to the actual result on
the unpartitioned data. An evaluation of the local best sub-
structure of one child by the other children would further
increase the accuracy. The evaluation and aggregation can
be computed intelligently using some additional memory at
the master and child nodes in order to reduce the time tak-
en. While to our knowledge SP-SUBDUE is the only
parallel graph miner that uses static partitioning of the input
data, ones designed in future can take advantage of our
scheme.

Acknowledgments. We would like to thank Randall Svanca-
ra of the WSU HPC team for helping us immensely in
getting the jobs set up and for his help in figuring out issues
that we encountered while testing the system.

References

Cook, D.J., Holder L.B., Galal, G., and Maglothin, R. 2001. Approaches

to parallel graph-based knowledge discovery. Journal of Parallel Distrib.

Comput. 61, 3 (March 2001): 427-446.

Cook, D.J. and Holder, L.B. 1994. Substructure discovery using minimum

description length and background knowledge. J. Artif. Int. Res. 1, 1 (Feb-

ruary 1994): 231-255.

Reinhardt, S. and Karypis, G. 2007. A multi-level parallel implementation

of a program for finding frequent patterns in a large sparse graph. In Pro-

ceedings of Twenty First IEEE International Parallel & Distributed

Processing Symposium, 1-8. Long Beach, Calif.: IEEE Press

Buehrer, G., Parthasarathy, S., Nguyen, A., Kim, D., Chen, Y. K., and

Dubey, P. 2005. Parallel Graph Mining on Shared Memory Architectures,

Technical report, Ohio State University, Columbus, OH.

Cook, D.J. and Holder, L.B. 2006. Mining Graph Data. Hoboken, N.J.:

John Wiley & Sons.

Karypis, G. and Kumar, V. 1998. Multilevel k-way partitioning scheme

for irregular graphs. Journal of Parallel Distrib. Comput. 48: 96 -129

Rajappa, S. 2003. Data mining in nonuniform distributed databases. Mas-

ter‟s thesis, The University of Texas, 2003.

Cook, D.J., Holder, L.B., Thompson, S., Whitney, P. and Chilton, L.

2009. Graph-Based Analysis of Nuclear Smuggling. Journal of Applied

Security Research 4: 501-517.

McKay, S.J., Woessner, P.N., and Roule, T.J. 2001. Evidence extraction

and link discovery (EELD) seedling projects, database schema descrip-

tion, version 1.0, Technical Report 2862, Veridian Systems Division,

August 2001.

Meinl, T., Wörlein, M., Fischer, I., and Philippsen, M. 2006. Mining Mo-

lecular Datasets on Symmetric Multiprocessor Systems. In Proceedings of

the 2006 IEEE International Conference on Systems, Man and Cybernet-

ics 6: 1269 - 1274. Taipei, Taiwan. IEEE Press

Di Fatta, G. and Berthold, M.R. 2006. Dynamic load balancing for the

distributed mining of molecular structures. IEEE Transactions on Parallel

and Distributed Systems, Special Issue on High Performance Computa-

tional Biology, 17(8):773-785.

Kuramochi, M. and Karypis, G. 2004. Finding frequent patterns in a large

sparse graph. In Proceedings of 2004 SIAM International Conference on

Data Mining, 345 – 356. Philadelphia, PA: Society for Industrial and Ap-

plied Mathematics.

Pacheco, P.S. 1996. Parallel Programming with MPI. San Francisco, Ca-

lif.: Morgan Kaufmann Publishers Inc.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. and Me-

non, R. 2001. Parallel Programming in OpenMP. San Francisco, Calif.:

Morgan Kaufmann Publishers Inc.

Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry. Singapore:

World Scientific.

Manocha, N.; Cook, D.J.; and Holder, L.B. 2001. Structural web search

using a graph-based discovery system. Intelligence Magazine 12(1): 20–

29.

Noble, C. and Cook, D. August 2003. Graph-based anomaly detection. In

Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge discovery and Data Mining, Washington, D.C. New York,

NY: ACM Press

Su, S., Cook, D.J. and Holder, L.B. 1999. Knowledge discovery in mole-

cular biology: Identifying structural regularities in proteins. Intelligent

Data Analysis 3:413–436.

 Figure 6. Time taken by SP-SUBDUE-2 to discover

(6v,5e) substructure setting no. of substructures evaluated

to 945

79

