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Abstract 
Maritime threat detection is a challenging problem because 
maritime environments can involve a complex combination of 
concurrent vessel activities, and only a small fraction of these 
may be irregular, suspicious, or threatening. Previous work on 
this task has been limited to analyses of single vessels using 
simple rule-based models that alert watchstanders when a 
proximity threshold is breached. We claim that Probabilistic 
Graphical Models (PGMs) can be used to more effectively 
model complex maritime situations. In this paper, we study the 
performance of PGMs for detecting (small boat) maritime 
attacks. We describe three types of PGMs that vary in their 
representational expressiveness and evaluate them on a threat 
recognition task using track data obtained from force 
protection naval exercises involving unmanned sea surface 
vehicles. We found that the best-performing PGMs can 
outperform the deployed rule-based approach on these tasks, 
though some PGMs require substantial engineering and are 
computationally expensive.  

1. Introduction 
Early prediction of an evolving threatening situation is 
critical for maritime force protection. Methods for 
analyzing these situations are typically performed from one 
of two perspectives: (1) Wide area surveillance for post-
hoc analysis, where vessels are tracked across large 
geographical areas (e.g., tracking international shipping 
vessels using the Automated Identification System (AIS)) 
(Bostwick et al. 2009) or (2) local area surveillance over 
comparatively small distances (e.g., 1000-5000 yards) for 
real-time maritime behavior analysis and threat detection, 
which is our focus in this paper. We previously studied 
vessel classification with video data (Gupta et al. 2009) 
and anomaly detection using video data extended with 
synthetic anomaly data (Auslander et al. 2011). In this 
paper we focus on threat detection with real maritime data.  

In particular, here we compare algorithms for identifying 
threats in scenarios where a combination of unmanned sea 
surface vehicles (USSVs) and ground-based sensors are 
used to monitor maritime locations such as ports, harbors, 
and rivers. For example, maritime assets such as oil 
platforms are vulnerable to attacks from a variety of near-
shore threats such as small boats. Maritime threats are 

assessed by watchstanders who rely on automated video 
surveillance systems to reduce information overload. These 
systems help watchstanders to monitor many concurrent 
contacts and provide some support for behavior analysis 
and threat prediction. However, state-of the-art systems for 
local area surveillance, which perform perimeter-based 
threat detection (e.g., (Lipton et al. 2002; RemoteReality 
2011), are limited because they consider only the relative 
location of a potential threat and ignore many other 
features and relations among maritime vessels. We argue 
that maritime threats involve complex combinations of 
vessel types and their activities, and more sophisticated 
algorithms are needed to support watchstanders.  

Probabilistic Graphical Models (PGMs) can be used to 
represent relations compactly and permit efficient 
inference in the presence of uncertainty (Koller and 
Friedman 2009). A PGM uses a declarative state 
representation, a probabilistic algorithm for inference, and 
can combine expert knowledge and accumulated data to 
estimate state and state transition distributions. Because 
PGMs can model probabilistic relations, we believe they 
are better suited than perimeter-based algorithms for 
predicting maritime threats. However, they have not 
previously been applied to local maritime surveillance.  

In this paper, we apply and evaluate PGMs for maritime 
threat detection. We claim that representing and exploiting 
relational information enables better recognition of small 
vessel attacks. We evaluate three types of PGMs that vary 
in their representational abilities, and compare their 
performance against baseline (non-PGM) approaches. Our 
results support our claim that PGMs outperform these 
baseline approaches for maritime threat recognition. 

We review the maritime threat detection task in §2, and 
introduce the PGMs we study in §3. Section 4 describes 
our empirical study and the results. We discuss issues 
pertaining to this task in §5 and conclude in §6. 

2.  Local Maritime Threat Detection 
The detection of small vessel threats and prevention of 
their attacks is a crucial capability for protecting maritime 
personnel and assets, and its need is exemplified by the 
USS Cole bombing and related incidents. Navy ships and 
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merchant vessels can be in close proximity with smaller 
vessels in busy maritime locations. Unlike large vessels, 
small vessels do not carry AIS equipment. Therefore, wide 
area surveillance approaches are inappropriate for this task.   

The state-of-the-art approach for local surveillance is a 
perimeter defense mechanism, which defines a perimeter 
(or electronic fence) about a shoreline or vessel. Given a 
set of rules, they trigger alerts to watchstanders when they 
detect other vessels that penetrate this perimeter (Lipton et 
al. 2002; RemoteReality 2011). This approach can 
substantially reduce the manual effort needed for effective 
video surveillance. However, it is limited; it cannot detect 
threats based on analysis of vessel behavior outside of this 
perimeter, nor reason about intent or coordinated threats. 

We focus on the first of these limitations  on algorithms 
for detecting threats other than via only perimeter breach. 
It is not clear what rules exist for distinguishing threats 
from non-threats outside pre-defined perimeters, thus 
complicating an extension of the rule-based approach. 
Also, probabilistic algorithms may be better-suited for 
modeling this task. Finally, the relations (e.g., spatial, 
temporal, semantic) among the nearby small vessels, the 
maritime asset in their vicinity, and the platform used to 
observe these vessels may be useful for assessing whether 
a threat exists. Therefore, we are exploring the utility of 
probabilistic graphical models (PGMs) for this task. PGMs 
have performed well on non-maritime behavior recognition 
tasks (e.g., (Tran and Davis 2008; Manfredotti 2009; Lavee 
et al. 2009)), but to our knowledge they have not yet been 
applied to the task of maritime threat detection.   

In recent years, autonomous USSVs have been proposed 
to serve a key role in force protection tasks (USV 2007). 
For example, they could be used to guard high-value assets 
in escort missions in areas of high vessel traffic. Given 

could potentially identify and track nearby vessels, detect 
potential threats, and (in coordination) block threatening 
vessels from reaching these assets. Our research focuses on 
the design and evaluation of maritime threat detection 
algorithms for these decision aids on autonomous USSVs. 

3. Probabilistic Graphical Models 
PGMs offer a number of benefits for modeling relations in 
a complex domain. They provide a compact encoding of a 
distribution in a multi-dimensional space, model variable 
independencies, and have well understood mathematical 
foundations. When selecting which PGMs to use in a given 
domain, tradeoffs must be made between feature 
expressiveness, learning, and inference costs.   

Threat recognition in a maritime domain is a relatively 
unexplored application, and it is not clear which algorithms 
will perform well on this task. Therefore, in comparison 
with baseline algorithms (see §4), we examined the 
performance of a small but varied collection of PGMs on 

this task, including three that differ in their representational 
expressiveness: (1) Hidden Markov Models (HMMs), (2) 
Conditional Random Fields (CRFs), and (3) Markov Logic 
Networks (MLNs). We describe these in the following 
subsections. 
3.1 Hidden Markov Models (HMMs) 
An HMM is a generative model of a probabilistic 
sequence. An HMM model is a graph whose nodes denote 
hidden states and whose links denote transition 
probabilities from one state to another (Rabiner 1989). 
HMMs model the joint distribution p(yt,xt), for observation 
xt and state yt at time t using two assumptions. First, it 
makes the Markov assumption: state transitions depend 
only on the preceding state, and are independent of all 
other states. Second, it assumes that each observation 
depends only on the current state (Sutton and McCallum 
2006). The joint distribution is modeled as follows: 

 

where p(yt|yt-1) models the transition distribution and 
p(xt|yt) the observation distribution. HMM learning and 
inferencing is performed using the forward-backward and 
the Viterbi algorithms, respectively. 
 HMMs have been used successfully in many tasks such 
as natural language processing, speech recognition, and 
modeling of dynamic agents. Although they model 
temporal relations, they cannot compactly represent local 
features and spatial relations. When given multiple 
dependent features, an HMM becomes intractable (Sutton 
and McCallum 2006). Thus, HMM extensions include 
coupled HMMs, which represent limited relational features 
(Brand et al. 1997). CRFs also eliminate this limitation of 
HMMs, and we describe them next. 
3.2 Conditional Random Fields (CRFs) 
A linear chain CRF is the discriminative counterpart to the 
generative HMM and can also be used to model a sequence 
or an agent  in a temporal domain. A CRF is a 
discriminative model because it models the conditional 
distribution p(y|x) rather than the joint distribution p(y,x) 
and can reason with interdependent features. In the 
maritime domain, many features violate the independence 
assumption, which may make CRFs a more suitable model 
than HMMs.   
 Parameter learning algorithms for CRFs typically use 
gradient descent algorithms such as Limited-Memory 
BFGS (LMBFGS) (Sutton and McCallum 2006). Exact 
inference is also possible for linear-chain CRFs. Inference 
is performed using the forward-backward or Viterbi 
algorithms. Sutton and McCallum define linear-chain 
CRFs as a distribution p(y|x): 

 



where Z(x) is an instance-specific normalization function 

, 

and where Y and X are random vectors, K is the set of 
features,  is a parameter vector, and  is a 
set of real-valued feature functions. This model leads to an 
exponential build up when calculating Z(x), but this can be 
computed efficiently in the same way as in HMMs, 
resulting in extremely fast inferencing. 
 CRFs have been applied to natural language processing, 
bio-sequencing, and computer vision tasks. Unlike HMMs, 
a CRF can model local and temporal features. However, 
CRFs are limited in their ability to naturally model expert 
domain knowledge. For example, they cannot model 
relational spatial features such as the distances between 
multiple pairs of ships in a maritime domain. Markov logic 
networks remove this limitation, as we describe next. 
3.3 Markov Logic Networks (MLNs) 
MLNs combine first-order logic (FOL) with a probabilistic 
interpretation to represent expert domain knowledge 
(Domingos and Lowd 2009).  In FOL, domains are defined 
by a set of grounded formulas. Each formula represents a 
hard constraint whose violation invalidates the domain 
knowledge. This makes FOL difficult to apply to real-
world domains, whose features are rarely consistent. 
MLNs relax these constraints; they can model domains 
where constraint violations have low probability, but are 
not impossible. MLNs associate weights with FOL 
formulae, where weights represent the strength of 
constraint. A higher weight indicates a larger difference in 
the log probability between interpretations that satisfy the 
constraint from those that do not. Weights can be assigned 
manually or can be learned from example data.  

An MLN is a set of pairs (Fi,wi) where Fi is a FOL 
formula and wi is a real number. Together with a finite set 
of constants C it defines a Markov network ML,C 
(Domingos and Lowd 2009) where: 
1. ML,C contains one binary node for each possible 

grounding of each predicate appearing in the set of 
possible groundings L. The value of the node is 1 if the 
ground predicate is true, and 0 otherwise. 

2. ML,C  contains one feature for each possible grounding 
of each formula Fi in L. The value of this feature is 1 if 
the ground formula is true, and 0 otherwise. The weight 
of the feature is the wi associated with Fi   

From this definition, an MLN can be viewed as a template 
for constructing a grounded Markov network, which may 
vary widely in shape and size depending on its constraints. 
The probability distribution specified by a grounded 
Markov network x is represented by the following log-
linear model: 

 

where  is the number of true groundings of Fi in x and 
Z is a normalization constant. 

MLNs are a more general model than CRFs or HMMs, 
and this allows them to be applied to many of the same 
tasks. Also, an MLN can encode a greater amount of 
relational knowledge, which makes them useful in scene 
understanding, object recognition, and activity recognition.  
In the maritime domain, MLNs can more easily encode 
relational spatial features, which allow them to model 
vessel behaviors more accurately. Table 1 summarizes 
these three types of PGMs. 

4. Empirical Study 
4.1 Objectives 
We hypothesized that PGMs can outperform rule-based 
perimeter defense models for maritime threat detection 
given small vessel tracks from fused USSV sensor data. 
Although intuitive, this has not been previously studied.  

We also wanted to assess the relation between threat 
recognition performance and each PGM ability to 
represent domain knowledge, and how the length of the 
situation history (see §4.4) affects relative performance.  
4.2 Data  
We obtained our evaluation corpus from the 2010 Trident 
Warrior exercise (Summer 2010). This proprietary data 
was provided to us by Spatial Integrated Systems, who 
recorded it during multi-day USSV tests in San Diego Bay. 
Two USSVs participated in missions that involved 
escorting and protecting a High Value Unit (HVU) as it 
moved through a channel into the open water. Periodically, 
two human-controlled boats would attack  the HVU and 

When an 
attack was identified, the USSV closest to the attacker 
would move to block while the other USSV would shift to 
protect the HVU from other attacks. 

During these scenarios, the USSVs employed their 
sensors to create a shared fused situational picture. The 
fused data for the track of each observed vessel (i.e., the 
five in the scenario or others in the field of view) contained 
nine raw attributes: speed, bearing, pitch, roll, time, 
latitude, longitude, id, and current state (USSV only, with 

moving to escort  
However, we performed extensive preprocessing on this 

data prior to using it in our experiments, and used a 

Table 1: Qualitative Comparison of Candidate PGMs 
Characteristic HMMs CRFs MLNs 

Representation Feature tokens Feature vectors FOL with weights 
associated to rules 

Learning Method Generative Discriminative Both 

Feature Types Temporal Temporal and 
local 

Temporal, local, 
and spatial 

Learns 
State 

transition 
probabilities 

Clique 
potentials Weights for rules 



different set of attributes. First, we synchronized the tracks 
because they were recorded at different clock rates. 
Second, we removed noisy tracks, which were caused by 
sensor data error (which could yield duplicate or erroneous 
tracks) or non-vessels (e.g., buoys, waves). Finally, we 
created and applied a tool (Figure 1) to manually annotate 
each track instance as Attacking, Cruising, or Escaping 
depending on their perceived movement. 

The raw attributes lack some useful information that the 
PGMs can exploit. Therefore, we computed four features 
per track instance (Table 2) for use by the PGMs. Prior 
Activity is the activity that a vessel performed in the prior 
time step. This value is known during training, but is 
predicted during testing.  Distance to HVU is the tracked 

 distance to the HVU . In Front of HVU 
denotes whether the tracked vessel is bearing on the HVU. 
Finally, Approaching HVU is a binary feature indicating 

 
This produced two sets of tracks, each of which is 53 

minutes in length and includes at least one attack instance, 
and does not break tracks that contain attacks across the 
two sets. The characteristics of these sets are summarized 
in Table 3, where a time step is 10 seconds in length.  

4.3 Measures 
The threat recognition task involves predicting, at each 
time step, whether a human-controlled boat is attacking the 
HVU. We used precision, recall, and F1 (Manning et al. 
2008) to assess performance. We also measured each 

 
4.4 PGM tools and escort scenario models 
We next describe the implementations we used for the 
three PGMs. Each was tested using a sliding history of 
observations whose size was optimized during training.  
HMMs 
We used MALLET (Machine Learning for LanguagE 
Toolkit) (McCallum 2002) to implement HMMs. We also 
used its sequence tagging capabilities and its 
implementations of the forward-backward training 
algorithm and the Viterbi algorithm for inference.  

 HMMs require a single token as input. Therefore, we 
concatenated the current state feature values and 
provided them as input. (Only a maximum of 16 feature 
combinations of the possible 48 exist in our data. In future 
work, we will test codebook methods to fuse the features.) 

During training, we created sequences of the selected 
window size and performed inference using them. During 
testing, we provided a trained HMM with a sequence of 
observations, from which we inferred a sequence of 
activities, and used the final activity as its prediction. 
CRFs 
W tagger to implement our 
CRFs, trained them using its implementation of LMBFGS, 
and performed inference using the Viterbi algorithm. A 
CRF, unlike an HMM, can represent local features, and 
does not require feature concatenation.  
MLNs 
For MLNs, we used Alchemy (Alchemy 2011), an open 
source statistical relational learning and probabilistic 
inferencing package. Alchemy supports generative and 
discriminative weight learning, and multiple types of 
inference (e.g., MAP, belief propagation, and MCSAT). 
We report the results from only generative learning using 
MAP inference because, in our trial runs, generative 
learning outperformed discriminative learning.   
 We specified the MLNs using FOL syntax. This requires 
defining one or more predicates and a rule set. For 
example, the following rule denotes that when activity a1 is 
performed at time t1 by an agent x, then x will perform a2 at 
time t2 (where t2 immediately succeeds t1): 

Activity(x,+a1,t1) ^ Succ(t2,t1)  Activity(x,+a2,t2)  (1) 
The signs denote that Alchemy creates a new formula 
for every possible combination of the values for a1

 and a2 
that fit the type specified in their predicate declaration.  

Through manual iteration, we chose MLN rules similar 
to Equation 1 for the features in Table 2. Alchemy grounds 
these rules during training. During weight learning, we 
input the training data and the activity labels to Alchemy. 
Using the sliding window, we queried Alchemy for the 
most likely activity for each vessel at the current time step. 

Table 2: Computed Features from the Fused Tracks 
Features Description # Values  

Prior Activity  3 
Distance to 

HVU 
Discretized distance from tracked 
vessel to the HVU 4 

In Front of 
HVU 

Denotes whether the tracked vessel is 
bearing on the USSV (200  arc) 2 

Approaching 
HVU 

Denotes whether the vessel is 
approaching the HVU 2 

Table 3: Escort Scenario Data Sets 
Details Set 1 Set 2 

Length (number of time steps) 320 320 
Number of Tracks 46 53 
Concurrent Tracks [min,max]  [3,24] [3,12] 
Track Instances 1148 2310 
Track Instances that are Attacks 44 (3.8%) 35 (1.5%) 

Figure 1: Annotation tool screenshot depicting attackers 
(White), USSVs (Red), and the HVU (black). 



4.5 Protocol 
We evaluated the PGMs in a limited cross-validation study 
by first using Set #1 for training and Set #2 for testing, and 
then swapping the training and test sets. (We will conduct 
a more comprehensive CV study in the future, which will 
require careful separation of attack tracks into folds.)  

We included two baseline algorithms: Default predicts 
that every instance is an attack, while Perimeter Rule 
mimics the perimeter defense strategy described in §2; it 
uses one feature per track instance (Distance to HVU). 

For the PGMs, we tested window sizes from 1 to 100 in 
intervals of 5 (and a size of 2) and selected the size that 
maximized F1. For MLNs, we started at a window size of 2 
due to implementation constraints. Computation time 
constraints prevented us from reporting MLN results for 
window sizes of more than 60. For Perimeter Rule, we 
varied the triggering distance (between the HVU and the 
vessel being assessed) from 1 to 1000 meters.  
4.6 Results and analysis 
Table 4 displays the results for detecting attacks, and 
provides informal support for our hypothesis. As expected, 
Default performs poorly with respect to precision. 
Perimeter Rule performs well for the first set, where it 
learns a higher distance threshold, but not for the second, 
which involves testing on many more tracks of non-
attacking vessels. MLNs attain the highest F1 scores for 
both sets (e.g., 0.59 vs. 0.19 for the CRF model on Set #1), 
which may reflect their ability to better represent domain 
knowledge and learn weight settings from a few training 
instances. However, all PGM precisions decrease on Set 
#2, which we conjecture is because attack instances are 
rarer in Set #2 than in Set #1. 

Table 5 displays the optimal window sizes found for the 
PGMs on one test and their corresponding training and test 
times (summed over all 320 time steps). MLNs better 
exploit temporal information in this domain than do 
HMMs or CRFs (which selected window sizes of 5, 2, and 
2, respectively). MLNs require longer training times (82 
seconds vs. 1.3 and 3.6 for HMMs and CRFs, respectively) 
and inference times (an average of 47/2310 = 0.02 seconds 

per track instance), although this is not excessive at this 
window size. However, while the HMM and CRF models 
record a linear increase in the time required for inference 
as window size increases, the time required to test MLN 
models increases exponentially. Therefore, if large window 
sizes are required to optimize MLN performance on this 
real-time task, then further research would be needed to 
increase the speed of applying MLNs. 

5. Discussion  
Applying PGMs to real maritime data was challenging for 
a variety of reasons, some of which we describe below.  

5.1 Task-specific challenges 
Detecting small-vessel threats from tracks obtained from 
USSV sensors poses several challenges. For example, our 
data is noisy and requires substantial transformation for use 
by the PGMs. It also includes tracks from many civilian 
vessels, which complicates this task but makes it more 
realistic. As mentioned, threat detection needs to be 
performed in real time, which poses challenges for some 
types of PGMs (e.g., MLNs). Threats should be detected as 
early as possible; we will address this metric in the future. 
Finally, our future work will also include assessing the 
abilities of PGMs to identify coordinated attacks from 
multiple vessels.   

5.2 Modeling maritime threat prediction tasks 
Like Crane and McDowell (2012) we found that 
considerable trial and error was required to apply MLNs to 
our task. It is difficult to isolate the effect of a specific rule 

 We modified rules several 
times and even attempted to manually adjust the weights. 
However, this resulted in marginal improvement. To obtain 
more insight, we developed a result visualizer (similar to 
our annotation tool) that displays the learned activities over 
time. Using this tool, we identified the state transitions 
where these models perform poorly, which allowed us to 
more effectively adjust the features and rules.  

The MLNs were highly sensitive to the type of modeling 
rules. Complex formulation of domain knowledge led to an 
explosion of the state space and made weight learning 
impractical (e.g., requiring days to compute). We 
examined a variety of rule formulations for their effects on 
weight learning and inference. However, unlike Crane and 
McDowell (2012), we did not find substantial 
improvement by including unit clauses in our models.   
 We also explored the use of more complex rules such as 
changes in distance across time intervals. This added 
another 144 clauses and increased the training time to 5 
hours and inference to 3.5 minutes, up from 82 seconds for 
training and 47 seconds for inference using the optimal 
MLN model. These more complex rules also proved 
challenging for -learning procedure and 
invariably decreased rule set performance.  

Table 4: Results for Predicting Attack Instances 

Algorithm 
Trained on Set #1 Trained on Set #2 

Precision Recall F1 Precision Recall F1 

Default 0.04 1.00 0.07 0.02 1.00 0.03 
Perimeter Rule 0.38 1.00 0.55 0.04 0.37 0.08 

HMM 0.40 0.46 0.43 0.06 0.40 0.10 
CRF 0.63 0.11 0.19 0.11 0.57 0.18 
MLN 0.42 1.00 0.59 0.11 1.00 0.19 

Table 5: Optimum Window Size, Training 
 (on Set 1), and Test Times (on Set 2) in Seconds 

Algorithm Window Size Training Time Test Time 
Perimeter Rule N/A N/A 0.3 

HMM 2 1.3 0.4 
CRF 2 3.6 0.3 
MLN 5 82.0 47.0 



5.3 Parameter tuning 
Figure 2 displays, when training on Set #2, the F1 scores 
from training the PGMs as the window size varies and the 
performance of Perimeter Rule as the distance threshold 
varies. For the most part, window size has only a minor 
effect on PGM training performance, and has little effect 
on the test performance. (In contrast, the distance threshold 
greatly affected Perimeter Rule training and test 
performance.)  

6. Conclusion  
Detecting small-vessel maritime threats is an important but 
challenging task. Deployed approaches, which use a 
perimeter defense trigger, are limited because they ignore 
vessels beyond this perimeter, as well as many of their 
features. We describe an initial application of three 
probabilistic graphical models (PGMs) to this task, and 
report some performance benefits. 

However, many topics remain for future research. For 
example, efficient methods for MLN structure learning 
could greatly simplify our application of them to this task. 
Next, we have not yet addressed the topic of coordinated 
attacks, which could be represented using PGMs. Also, 
while we have studied knowledge-poor anomaly detection 
methods for maritime behavior recognition from local 
surveillance data (Auslander et al. 2011), and here study 
PGMs for threat detection, we plan to also study 
knowledge-intensive intent and plan recognition 
techniques for this task. Finally, we plan to test these 
techniques onboard unmanned sea surface vehicles under 
real-time conditions.   
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