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Abstract

This paper investigated the robustness of Teager Energy
Cepstrum Coefficient (TECC) in differentiating emo-
tion categories for speech at different White Gaussian
noise levels by comparing the performance with MFCC.
Experiments involved the normalized squared error
measurement, the multi-classes (four classes) emotion
classification and the pair-wise emotion classification.
This study included four emotion categories (neutral,
happy, sad, and happy) from three databases (two En-
glish, one German). The result showed that TECC per-
formed equally or outperformed MFCC in both multi-
emotion and pair-wise emotion classifications at all
noise levels for all three databases. Using TECC fea-
tures only, up to 89% for the four-emotion classification
and 99% for the pair-wise emotion classification accu-
racy rate could be achieved.

Introduction
Automated emotion detection is the attempt to quantify
an abstract interpretation into objectively measured com-
ponents of recorded human interaction. Emotion recogni-
tion in a noisy condition remains a challenging problem.
The literature shows that Mel-Frequency Cepstrum Coeffi-
cients (MFCCs) exhibit robust performance in speech anal-
ysis in noisy environment, especially for speech recogni-
tion (Skowronski and Harris 2002; Dimitriadis, Maragos,
and Potamianos 2005; Milner, Darch, and Vaseghi 2008;
Muralishankar and O’Shaughnessy 2008; Zhang et al. 2009;
Yu et al. 2008; Chu and Champagne 2008; Li and Huang
2011; Varela, San-Segundo, and Hernandez 2011; Milner
and Darch 2011). On the other hand, the work on the use of
Teager Energy Operator (TEO) (Caims and Hansen 1994;
Zhou, Hansen, and Kaiser 2001; He et al. 2009; Sun and
Moore 2011) in classifying emotion has shown that these
features can provide valuable insight into distinguishing dif-
ferent types of emotional expression. These work motivate
the study of emotion recognition using features combin-
ing the advantage of both MFCC and TEO, which has not
been reported much yet. Teager Energy Cepstrum Coeffi-
cient (TECC) was first proposed by Dimitriadis and his col-
leges and studied to show its robust performance in speech
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recognition (Dimitriadis, Maragos, and Potamianos 2005;
2011). Motivated by the processing of MFCC, the extrac-
tion of TECC is similar to that of MFCC but using Teager
Energy instead of the squared energy as the primary differ-
ence (details will be shown in the Section of Feature). In our
study, the robustness of TECC in the application of emotion
recognition for speech was investigated and compared with
MFCC at different White Gaussian noise levels for three
databases, two of which are English emotional databases and
one is in German.

The paper is structured in the following way. The emo-
tional speech data used in this study is described first. Then
the extraction of features is explained, followed by the
methodology of analysis. Finally, the results of analysis is
presented and the conclusion is drawn.

Data
The emotional speech data in this study involves three
databases, the Emotional Prosody Speech and Tran-
scripts database (EPST), the Electromagnetic Articulogra-
phy database (EMA), and the German Emotional Speech
database (GES). To provide better comparability among
databases, the four emotion categories (neutral, angry, sad,
and happy) consistently presenting in all three databases are
investigated. The number of sample units for each is shown
in Table 1.

The EPST database (Liberman et al. 2002) contains
recordings of emotional and semantically neutral speech
spoken by seven native speakers (4 females and 3 males)
of standard American English. All the speakers are profes-
sional actors. Each actor read short (4-syllables) dates and
numbers (e.g. “five hundred one” or “august thirteenth”)
with the intent to express 15 different emotional categories
(“neutral”, “disgust”, “panic”, “anxiety”, “hot anger”, “cold
anger”, “despair”, “sadness”, “elation”, “happy”, “interest”,
“boredom”, “shame”, “pride” and “contempt”) selected ac-
cording to the Banse and Scherer’s study (Banse and Scherer
1996). The speech was recorded at a sampling frequency of
22.05 kHz with 2-channel interleaved 16-bit PCM format
(down sampled to 16 kHz for this study). The duration of
each utterance varied approximately from 1 to 2 seconds.
Speech data of emotion categories neutral, hot angry, sad,
and happy from all seven actors in the EPST database were
used in this study.
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Table 1: Number of sample units for databases.
Emotions neutral angry sad happy total
EPST 80 139 159 165 543
EMA 146 141 157 124 568
GES 79 127 62 71 339

The EMA database contains the emotional speech record-
ings of four emotions (“neutral”, “angry”, “sad”, and
“happy”) from three English speakers (2 females an 1 male)
(Lee, Kazemzadeh, and Narayanan 2005). A set of 14 sen-
tences, which were mostly semantically neutral (e.g.,“Your
grandmother is on the phone”), was uttered by each speaker
to express four target emotions with five repetitions. The
sentence duration varies from 1 to 4.5 seconds. The sam-
pling rate of the recordings was 16kHz. Except for the miss-
ing sentences due to technical issues while recording, all
four-emotion sentences from three speakers were included
in this study.

GES is a German emotional database spoken by 10 speak-
ers (5 females and 5 males) simulating seven emotions
(“neutral”, “disgust”, “anxiety”, “sad”, “happy”, and “bore-
dom”)(Burkhardt et al. 2005). The speech material was a set
of 10 sentences with no semantically emotional bias cover-
ing everyday life content (e.g., “The cloth is lying on the
fridge”). The sentence duration varies from 1 to 9 seconds.
The speech was recorded at 48kHz and later down sampled
to 16kHz. Speech sentences of neutral, angry, sad, and happy
from all 10 actors in the GES database were used in this
study.

Feature
The statistics of MFCC and TECC features and their deriva-
tives (∆MFCC and ∆TECC) were extracted and calculated
to form the feature set in this study.

MFCCs were computed from the log-squared-energy in
frequency bands distributed over a Mel-scale. The extraction
of MFCC features for each speech sample was processed
in five steps: (1) marked the voiced section of speech, (2)
divided the voiced section into frames approximating four
pitch periods in length with a 10ms step, (3) took the Fourier
Transform on each frame, (4) mapped the power spectrums
on to a Mel-scale, (5) took the log of the power at each Mel-
scale band, (6) took the Discrete Cosine Transform (DCT)
of Mel-log powers. The amplitude of the resulting spectrum
was MFCC. The ∆MFCC feature was calculated by Eq. 1,

∆MFCCj(i) = MFCCj(i+ 1)−MFCCj(i), (1)

where MFCCj(i) is the jth coefficient of MFCC from the
ith frame. The number of coefficients of MFCC used in this
study is 12.

TECC was proposed with the motivation of the process-
ing of MFCC feature and Teager Energy Operator (Dimitri-
adis, Maragos, and Potamianos 2005). Teager Energy was
proposed by Teager based on his nonlinear model of the true
source of sound production, which is actually the vortex-
flow interactions (Teager 1980; Teager and Teager 1983). He

developed the Teager Energy Operator supporting the obser-
vation that hearing is the process of detecting the energy. The
TEO of discrete-time speech signal x(n) can be calculated
following Eq. 2 derived by Kaiser (Kaiser 1990),

TEO[x(n)] = x2(n)− x(n+ 1)x(n− 1), (2)

where x(n) is the nth sample of signal. The extraction pro-
cedure of TECC was similar to MFCC but using Teager En-
ergy TEO[x(n)] instead of the squared energy [x(n)]2 as
the primary difference. The voiced speech was segmented
into frame with length approximating four times of the pitch
period with a step size of 10ms. The extraction on one frame
of signal was demonstrated in Figure 1. The Gammatone fil-
ter is given by Eq. 3 in the time domain,

g(t) = Atn−1exp(−2πERB(fc)t)cos(2πfct), (3)

where A, b, and n are Gammatone filter design parameters
and fc is the center frequency. According to (Irino and Pat-
terson 1997; Dimitriadis, Maragos, and Potamianos 2005),
the parameters are set as b = 1.019 and n = 4. Equivalent
Rectangular Bandwidth (ERB) represents the bandwidth of
filters, which is given by Eq. 4,

ERB(f) = 6.23(f/1000)2+93.39(f/1000)+28.52. (4)

where f is the center frequency in Hz. And the filter gain A
is set under the consideration that the frequency response at
the center frequency equals to one. The filter placing is in
Bark-scale (critical filterbank) (Zwicker and Terhardt 1980)
and the number of filterbank in this study is 25. The ∆TECC
feature is calculated by Eq. 5,

∆TECCj(i) = TECCj(i+ 1)− TECCj(i), (5)

where TECCj(i) is the jth coefficient of TECC from the
ith frame. All features were quantified using seven statis-
tics (i.e, the mean, median, minimum, maximum, standard
deviation, range, and inter-quartile) across all frames of a
sample to form the representation of an utterance. The fea-
ture extraction produced 168 MFCC features and 350 TECC
features.

Methodology
The purpose of this study was to evaluate the robustness of
the discrimination ability of TECC features in noisy condi-
tions. Investigating the relationship between the robustness
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Figure 1: The flowchart of TECC extraction algorithm on
one frame.
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of features and the noise degree of speech requires emo-
tional speech whose noise level is quantified and measur-
able. Therefore, five sets of data were created by adding
White Gaussian noise to the “clean” speech dataset at five
Signal Noise Ratio (SNR) levels from 20dB to 0dB with
the step of 5dB. In total, six datasets (including the clean
data) were available for each database (i.e.,five noisy and
one clean).

It has been shown that acoustic features are speaker-
dependent because they capture the characteristics of speak-
ers (e.g., gender, language, culture) (Dromey, Silveira, and
Sandor 2005). To eliminate the acoustic difference from fac-
tors other than emotion, speaker normalization was applied
to the extracted features first. The processing of speaker nor-
malization is shown in Eq. (6):

ˆfi,j =
fi,j −mean(fi,j)

std(fi,j)
, (6)

where fi,j is the ith feature descriptor for speaker j across
the samples of all four emotions and std refers to the stan-
dard deviation. The normalization was conducted within
database.

Given the normalized features, the normalized mean
squared error (NSME) (Dimitriadis, Maragos, and Potami-
anos 2005; Yu et al. 2008) for MFCC and TECC was calcu-
lated at each noise level and compared. NSME is the mea-
surement on the distance between feature of the noisy and
clean speech from the same signal segment. The calculation
of NMSE is shown in Eq. (7). It’s defined as the average Eu-
clidean distance between the “clean” and “noisy” features
divided by the mean of “clean” feature vector norm (Dimi-
triadis, Maragos, and Potamianos 2005),

NMSE =
mean(D(fi,clean, fi,noisy)

mean(|fi,clean|)
, (7)

where D(fi,clean, fi,noisy) is the Euclidean distance be-
tween the ith feature in feature set of the clean speech and
the noisy speech, and |fi,clean| is the vector norm of the ith
feature of the clean speech . The interpretation of NSME
is that a smaller NSME value implies more robustness the
feature possesses (i.e., NSME value is zero for the clean
speech).

The robustness of the discrimination ability of features
were evaluated in emotion recognition experiments. Using
5-fold cross-validation, the experiment built a four-class
classifier on four subsets of data using a Support Vector Ma-
chine (SVM) and tested it on the other subset (using Lib-
SVM tool (Chang and Lin 2011) in MATLAB, linear ker-
nel). This procedure was repeated using another choice of
training and testing sets till all sets has been tested. This
classification was repeated 10 times for randomization. The
further study was carried out as the discrimination ability
in pair-wise emotion classification task. Four emotion cat-
egories formed six emotion pairs. One classifier was built
for each pair using the liner kernel SVM with 5-fold cross-
validation and the whole analysis was repeated 10 time as
well.

Table 2: The normalized mean squared error (NSME) of
MFCC/TECC at five SNR levels for three databases. The
smaller value between MFCC and TECC under the same
noisy condition using the same data is shown in bold.

SNR EPST EMA GES
MFCC TECC MFCC TECC MFCC TECC

0 0.58 0.39 0.52 0.24 0.56 0.33
5 0.50 0.33 0.44 0.20 0.47 0.29
10 0.41 0.28 0.35 0.16 0.38 0.25
15 0.32 0.24 0.27 0.12 0.30 0.21
20 0.24 0.20 0.20 0.09 0.22 0.17

Results
In this section, the normalized mean squared errors of
MFCC and TECC on six datasets are reported. Then the
classification results of multi-emotion and pair-wise emo-
tion tasks are presented.

Mean Squared Error Analysis
Table 2 lists the NSME values at five SNR levels for three
databases. It could be observed that, for all three databases,
the values of MFCC and TECC decreases while the noise is
reduced. It indicates the reliability of values in Table 2 ac-
cording to the interpretation of NSME. It should be noticed
that, at all noise levels of all three databases, the value of
TECC is smaller than MFCC (value in bold). Especially for
EMA, the all-level TECC values are less than half of MFCC.
Based on the observation, the conclusion could be reached
that TECC is more robust than MFCC facing additive noise
in emotional speech. To further investigate the robustness
of emotion-distinguishing ability of TECC, multi-emotion
and pairwise-emotion classification experiments were con-
ducted.

Emotion Recognition experiments
In the emotion recognition experiment, both TECC and
MFCC features were applied in the multi-emotion classifi-
cation (four-emotion) task first. The four-emotion classifier
was built using LibSVM (Chang and Lin 2011) with the liner
kernel. The accuracy rate (AR) was calculated as the average
of those from 10 repetitions of classifications (5-fold cross-
validation).

The accuracy rates at different noise levels are shown in
Figure 2. From Figure 2 it’s clear that the accuracy rates
at all noise level using TECC are equal to or higher than
MFCC for all three databases (i.e., AR using TECC is up to
71% in EPST, up to 89% in EMA, and up to 85% in GES
for the four-emotion classification). When SNR equals to
zero, TECC and MFCC performed equally. As the noise is
reduced, using TECC improved the AR up to 38% for EPST,
9% for EMA, and 8% for GES. Overall, the ARs of EPST
are relatively lower than EMA and GES. The possible ex-
planation is that EPST contains 15 emotion categories while
EMA has 4, and GES covers 7. The wider variety of emotion
categories led to less acoustic difference between emotions
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Figure 2: The accuracy rate (AR in %) of the 4-emotion
classification using MFCC and TECC separately for three
databases, (a)EPST, (b)EMA, and (c)GES.

for speech in EPST than the other two. Moreover, the robust-
ness of emotion-distinguishing ability of TECC and MFCC
is shown in the relationship between the variation of ARs
with the change of noise levels.

For a better evaluation of the variation of ARs,the
standard deviation of ARs at six noisy conditions using
MFCC/TECC for each database is shown in Table 3. From
Table 3, the standard deviation of MFCC and TECC is ap-
proximating equal. But for EPST, the variation of TECC is
larger than MFCC. The reason for the larger variation of
TECC is the increase in Figure 2(a). The conclusion could
be reached that, both MFCC and TECC exhibit robustness
in emotion recognition in noisy conditions while the overall
AR of TECC is relatively higher. The larger variation of AR
using TECC (in EPST) is caused by the performance im-
provement of ARs with the reduction of noise than MFCC.

The hypothesis is that the performance of TECC and

Table 3: The mean and standard deviation (std) of ARs over
six noise levels for the 4-emotion classification using MFCC
and TECC separately for three databases.

EPST EMA GES
MFCC TECC MFCC TECC MFCC TECC

mean 52.3 61.1 79.1 84.3 79.6 84.1
std 1.11 7.69 3.97 4.01 1.55 2.05

MFCC is not the same to all emotion categories. To test
it, a pair-wise emotion classification experiment was con-
ducted and the results are shown in Table 4. Since this ex-
periment contains six emotion pairs at six noise levels for
three databases. The resulting number of classification will
be 108. Similar as the multi-classification task, for each clas-
sification, the accuracy rate was obtained as the average
from 10 repetitions of 5-fold cross-validation classifications.
Due to the large amount of resulting ARs, we show the mean
AR across 6 noise levels, their standard deviation, and the
“slope” of trend in Table 4 instead. The “slope” was cal-
culated by averaging the ∆ARs with the decrease of noise
levels as shown in Eq. 8,

∆ARi,snr(n) = ARi,snr(n+1) −ARi,snr(n), (8)

where ARsnr(n) is the AR at the nth SNR level using
feature i for each database, i.e., ∆AR(TECC,SNR=10) =
AR(TECC,SNR=20)−AR(TECC,SNR=10). A positive slope
indicate the increase of AR with the reduction of noise.

From the mean ARs row of Table 4, the AR using TECC
only reaches 74-85% for EPST, 86-99% for EMA, and 94-
99% for GES in pair-wise emotion classification. From the
standard deviation row of Table 4, the variation of ARs
is quite small comparing with their mean values (up to
5% for EPST, 5% for EMA, and 4% for GES). This in-
dicates the little effect from noise on the distinguishing
ability of both TECC and MFCC. Comparing TECC with
MFCC, the AR of TECC is increased by up to 15% for
EPST (neutral-angry), 8% for EMA (angry-happy), and 5%
for GES (angry-happy) than MFCC. What’s more, in the
“slope” rows, all slopes for TECC are positive, but some of
MFCC is negative. It quantifies the observation of variation
of MFCC in Figure 2, and emphasizes the reliability of the
emotion-distinguishing ability of TECC on noise speech.

Overall, the ARs from EPST are lower than EMA and
GES, which has been observed and explained in the multi-
emotion task. Even though, the ARs for all three databases
using TECC are fairly high, especially for EMA and GES
(up tp 99%). Among six emotion pairs, the pair angry and
happy possesses relatively lower ARs than other pairs for
EMA and GES of both features. This observation could be
explained by the conclusion that emotions with valence dif-
ference could be less captured by acoustics than arousal dif-
ference, which has been studied. This observation is not ob-
vious in EPST data. The reason for this is that we chose
“hot anger” in EPST, in which “cold anger” also uttered.
Therefore, the angry in EPST was supposed to exhibit more
difference in arousal than angry in other databases. As dis-
cussed with Table 4, the highest improvement of TECC than
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Table 4: The mean, standard deviation (std), and the “slope” (slp) of accuracy rate from the pair-wise emotion (N:nutral,
A:angry, S:sad, H:happy) classification of six noise levels using MFCC and TECC features for three databases.

N-A N-S N-H A-S A-H S-H
MFCC TECC MFCC TECC MFCC TECC MFCC TECC MFCC TECC MFCC TECC

EPST mean 69.9 80.3 76.8 84.4 79.4 86.1 67.5 74.2 72.0 77.5 71.7 74.0
std 2.1 4.3 2.5 4.4 1.4 4.6 3.3 2.6 1.4 3.1 1.8 6.8
slp 1.2 2.2 -0.9 2.3 -0.3 2.8 0.7 1.3 0.6 1.7 0.6 3.5

EMA mean 96.6 98.6 85.6 88.1 96.0 97.5 97.9 98.5 79.6 85.9 94.3 97.9
std 1.5 0.4 2.3 3.9 0.9 0.3 0.9 0.7 3.1 4.1 2.1 1.0
slp 0.7 0.1 1.3 2.0 0.4 0.1 0.5 0.4 0.4 1.7 0.9 0.4

GES mean 97.8 98.5 94.2 94.2 93.0 96.4 99.3 99.1 75.6 78.8 99.3 99.4
std 0.8 0.2 1.1 1.4 2.9 1.0 0.3 0.2 2.1 3.0 0.5 0.2
slp -0.4 0.1 -0.1 0.4 -1.6 0.5 0 0.1 0.9 1.5 -0.2 0

MFCC happens in the neutral and angry pair for EMA and
GES. This emphasized the performance of TECC when less
acoustic difference exists.

Conclusion
This study investigates the robustness of TECC in emotion
recognition facing additive noise at different levels. The re-
sults from three databases (two in English, one in German)
highlight the robust emotion-discrimination ability of both
TECC and MFCC. But the higher accuracy rate is achieved
by TECC than MFCC. For the condition when SNR equals
to zeros, TECC and MFCC performed similarly. While the
noise level is reduced (SNR = 5 ∼ +∞), TECC out-
performed MFCC in all emotion recognition tasks. Over-
all, using TECC features only, the up to 89% for the four-
emotion classification and 99% for the pair-wise emotion
classification accuracy rate could be achieved. Future work
will involve the study using the real-life authentic emotional
speech data in different speech quality conditions.
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