
 
Teaching UML Skills to Novice Programmers Using a

Sample Solution Based Intelligent Tutoring System 

Joachim Schramm, Sven Strickroth, Nguyen-Thinh Le and Niels Pinkwart 
Clausthal University of Technology, Department of Informatics 

{joachim.schramm,sven.strickroth,nguyen thinh.le,niels.pinkwart}@tu clausthal.de 
 
 
 
 

Abstract 
Modeling skills are essential during the process of learning 
programming. ITS systems for modeling are typically hard 
to build due to the ill definedness of most modeling tasks. 
This paper presents a system that can teach UML skills to 
novice programmers. The system is “simple and cheap” in 
the sense that it only requires an expert solution against 
which the student solutions are compared, but still flexible 
enough to accommodate certain degrees of solution 
flexibility and variability that are characteristic of modeling 
tasks. An empirical evaluation via a controlled lab study 
showed that the system worked fine and, while not leading 
to significant learning gains as compared to a control 
condition, still revealed some promising results. 

Introduction   
The number of students in Informatics and Computer 
Science is decreasing across many universities 
(Matthíasdóttir, 2006). This tendency might be explained 
by the fact that courses on programming, which constitute 
an indispensable part of studies related to Informatics and 
Computer Science, are considered difficult by many 
students. McCracken and colleagues showed that many 
students still have a lack of programming competence even 
after a full year of programming instruction (McCracken et 
al., 2001). Why is programming so difficult subject for 
novice students? The answers to this question are diverse. 
One aspect is that programming requires a combination of 
surface and deep learning. Deep learning here means that 
students have to concentrate on gaining an understanding 
of a topic while surface learning means memorizing facts. 
Thus, programming cannot be learned solely from books: 
Instead, students have to learn programming by developing 
algorithms and systems by themselves to deepen their 
understanding (Lahtinen et al., 2005). 
 Computational modeling is one of the essential steps 
during the process of developing a computer program 
                                                 
Copyright © 2012, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

(Feddon & Charness, 1999). However, the first step most 
novice programmers carry out when they start to solve a 
programming problem is typing in code - often, students 
tend to analyze a task and their system design in the middle 
of the coding process (Pintrich et al., 1987; Perkins et al., 
1989, p. 257). They could clearly benefit from more 
modeling skills (and from better meta-cognitive skills, but 
this is not subject of this paper). As such, systems capable 
of helping students acquire such modeling skills would be 
beneficial. Indeed, a few of these systems have been 
proposed. They all face the issue that most modeling tasks 
that go beyond the essential basics are ill-defined (Lynch et 
al., 2009) and that, consequently, computer based support 
(particularly, ITS support) is hard to implement and costly. 
In this paper, we propose a system that teaches UML skills 
to novice programmers. The system is “simple” in the 
sense that it only requires an expert solution against which 
the student solutions are compared, but still flexible 
enough to accommodate certain degrees of solution 
flexibility that are characteristic of modeling tasks. 

ITS Tools for Teaching Modeling - A Survey 
While not as many as in the domain of programming, there 
have been few attempts for building ITSs for 
computational modeling. Applying the classical Constraint 
Based Modeling approach, Baghaei and Mitrovic (2007) 
developed Collect-UML, a collaborative constraint-based 
tutor for UML class diagrams. This system supports 
students in problem-solving both individually and 
collaboratively. First, students create UML class diagrams 
individually using the system’s feedback. Then, they join 
into small groups to create group solutions. In the 
collaboration mode, the system compares the group 
solution to individual solutions of all group members. It 
provides feedback to the group solution, and at the same 
time it provides feedback on collaboration. An evaluation 
showed that students using this tool acquired more 
knowledge on effective collaboration than a control group 
by 1.3 standard deviations. Yet, using this system, students 

472

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference



are restricted to only using noun/verb phrases provided in 
the problem description as labels for classes, attributes, and 
methods. 
 Soler et al. (2010) developed another tool for teaching 
UML class diagrams. This tool is able to automatically 
assess UML class diagrams provided by a student. For 
each problem, the system has a set of correct solutions. 
When a solution is entered by the student, the system 
compares it against the specified correct solutions. The 
system selects the correct solution which is most similar to 
the one proposed by the student and returns a feedback 
message to the student. Using this system, students are 
restricted to use noun phrases indicated in the problem 
description to specify attributes for a class. There is no 
restriction on names of classes or relationships. Classes are 
assessed by considering the set of attributes attached to 
them. Relationships are evaluated in terms of the classes 
they relate to. It has been reported that students who used 
this tool got better examination marks than students who 
did not do so. 
 Similarly, several other tutoring systems for UML 
diagrams check a student’s diagram based on a single 
expert’s solution. This includes CIMEL, a system that 
supports students learning object-oriented analysis and 
design as problem-solving skills (Blank et al., 2005). Also, 
a system proposed by Ali et al. (2007) checks student’s 
class diagrams by identifying the differences between the 
student’s class diagram and an expert’s class diagram. 
Evaluation results of these systems have not been reported.  
 All the reviewed tutoring systems are intended to 
support students in their skills of modeling and creating 
UML diagrams. They share the limitations that only class 
diagrams are supported (and, thus, only static code 
structures but not algorithmic processes can be taught) and 
that solutions are often only checked against a single pre-
defined “expert solution” (or a small set thereof) and that 
alternative correct solutions which differ from the expert 
solutions are not accepted. 

The system presented in this paper attempts to overcome 
these limitations. It supports the design process with UML 
class and activity diagrams, and it accepts variations of 
good solutions.  

System description 
Architecture 
Several courses at Clausthal University employ a web-
based exercise management system named GATE 
(Strickroth, 2009). The GATE system is based on a 4-layer 
(GUI, application, persistence, data) client/server 
architecture. The exercise data is stored on the server in a 
central place in order to administer it more easily. Students 
can access the GATE system using a web-browser from 
anywhere. 

 The MFS system, presented in this paper, consists of 
two components: an adapted version of the open source 
modeling tool ArgoUML1, which can be started directly 
from the GATE system in a browser using Java Web Start 
technology, and some add-ons to GATE itself. Solutions 
developed in the modified ArgoUML tool can be uploaded 
to the GATE system, where feedback is calculated and sent 
back to the modeling tool. 
 Teachers can use ArgoUML to model and save either 
class diagrams or activity diagrams as sample solutions. 
These sample solutions can be associated to task 
descriptions. In addition, teachers can create a UML 
constraint test for each modeling task and they can specify 
the maximum number of feedbacks that a student is 
allowed to ask for (in order to prevent try & error 
strategies).  
 

 
Figure 1. Use cases of the MFS system 

Solution Analysis and Feedback Provision 
Students use the adapted ArgoUML for solving their tasks. 
Both class diagrams (for static code structures) and activity 
diagram (for algorithms) are supported. The diagram type 
is automatically detected based on the task description in 
GATE; it is then preselected in ArgoUML. Furthermore, 
the task description is embedded into the MFS-modified 
ArgoUML, so that it is visible for the students during the 
whole modeling process. 
 Over a specific function (called "Export2Gate"), 
students can send their task solutions to the server without 
the need of saving it and manually uploading it to the 
GATE submission system. If a student wants to edit an 
already uploaded submission, ArgoUML automatically 
loads the previous submission upon start. After a 
submission using the “Export2Gate”-function, a further 
window containing a “feedback button” is shown. 

                                                 
1 http://argouml.tigris.org/ 

473



 If a student presses the feedback button, the UML 
constraint test finds out whether the sample solution is an 
activity diagram or a class diagram, and stores information 
about the sample solution and the student solution. For 
class diagrams, this information comprises: 
 

� Number and names of classes 
� Number and names of attributes 
� Number and names of methods 
� Number and names of associations 
� Number and names of interfaces 
� Names of the interfaces 
� Number of composites 
� Number of aggregates 
� Number of inheritance 
� Number of interface implementations 
� Association to classes allocation 
� Attributes to class allocation 
� Methods to class allocation 
� Methods to interface allocation 

 
For activity diagrams, the stored information contains: 

� Number of start states 
� Number of end states 
� Number of forks 

� Number of joins 
� Number of junctions 
� Number of signal events 
� Number of action states 
� Number of transitions 
� Number of loops 

 
 Once a student asks for feedback, the elements of the 
sample solution are compared against the elements of the 
student solution. Most of these comparisons are based on a 
numerical comparison of the elements (see also Soler et al., 
2010). Feedback of the following type is then provided: 
 

� Note! <number of missing element(s)> <name of 
element> missing. 

� There is/are <number of elements> <name of 
element>, this is too much. 

� Number of <name of element> okay. 
 
 In addition, the names of the elements are compared to 
the sample solution and corresponding feedback is given to 
the student. Methods and attributes are examined for 
correct allocation to classes or interfaces. Finally, the 
allocations of associations are examined. 

In order to increase the freedom required for modeling 
tasks, the number of attributes and the number of classes 
are treated differently (to take into account that often, an 

Figure 2. Screenshot of the MFS with feedback 

474



aspect can be modeled with a class or with an attribute). 
The number of attributes plus the number of classes in the 
sample solution is compared against this summation in the 
student solution. If the number of classes plus the number 
of attributes in the sample solution is larger than this sum 
in the student solution, the student receives the following 
feedback: “Note! <number of missing element(s)> class(es) 
or attribute(s) missing.” 
 If the number of classes plus the number of attributes in 
the sample solution is smaller than this sum in the student 
solution, the student receives the following feedback: 
“There is/are <number of elements> class(es) or 
attribute(s), this is too much.”. 
 If the number of classes plus the number of attributes in 
the sample solution is equal to this summation in the 
student solution, and if the number of classes in the sample 
solution is equal to the number of classes in the student 
solution (this implies that the numbers of attributes are 
equal too), the student receives the following feedback: 
“Number of classes and attributes okay.” 

If, however, the number of classes plus the number of 
attributes in the sample solution is equal to this summation 
in the student solution, but the number of classes in the 
sample solution is unequal to the number of classes in the 
student solution, then the student receives the following 
feedback: “Number of classes and attributes is satisfying 
but there is another solution that is possibly better.” 

A similar calculation process is conducted to determine 
feedback for student-created activity diagrams, based on 
the indicators listed above. In particular, the number of 
loops, conditions, junctions and forks/joins are taken into 
account while calculating the differences between sample 
solution and student solution. 

Study description 
Hypotheses and Design 
We sought to evaluate the MFS system with respect to the 
hypothesis that the use of this tool helps learners acquire 
modeling skills better than a normal UML tool (without 
feedback features) can do. In addition, we were interested 
in comparing MFS to a typical University exercise group 
situation where one human tutor is available for a group of 
students. 

The MFS was developed for novice programmers. 
Because of this, we sought study participants with no or 
only very limited programming and modeling knowledge. 
Altogether, 30 persons participated in our study. These 
were assigned randomly to one of three conditions (A, B, 
C). In condition A, students worked with the aid of the 
MFS. The maximum number of possible feedbacks was 
limited for each task based on the degree of task difficulty. 
In condition B, the students were supposed to solve the 
tasks without any aid – here, the students used the standard 
ArgoUML for modeling. In condition C, the solution of the 
tasks was done with ArgoUML and the support of a human 

tutor. Here, the human tutor was instructed to give the 
same maximum number of feedbacks that was available in 
condition A (e.g., answer only to 5 questions of a student if 
in condition A, the students can ask for ITS feedback 5 
times). The human tutor was also asked to give roughly the 
same kinds of feedback that the ITS would have given but 
were free in their formulation (e.g., if the ITS had given the 
hint that three methods were missing, the human tutor 
would not have gone beyond this level of specificity, but 
was allowed to use different formulations, gestures, etc.). 

The participants had to fill out two questionnaires in the 
study. A pre-questionnaire contained demographic 
questions, and questions about programming and modeling 
skills. A post-questionnaire contained usability questions, 
questions about the automatic feedback, and questions 
about self-evaluation.  

After the pre-questionnaire, an introduction to UML 
diagrams was given. Further, the modeling tool ArgoUML 
and/or the MFS system was presented and explained. Then, 
each group was told how they would have to solve the 
tasks. Students in all conditions had to solve the same 
simple UML tasks (3 class and 3 activity diagrams) in the 
same time (70 minutes).  
  
Results 
To measure overall system usability, the widely accepted 
System Usability Scale (a questionnaire of ten items) was 
employed. With a total result of 80.25, the MFS scored 
very high (Tullis et al. 2008) – as such, no usability 
confounds to the study results can be assumed. 

For the data analysis, three students were excluded who 
did, apparently, not have the language skills required to 
understand to task. The remaining analysis is thus based on 
27 subjects (10 in condition A, 9 in condition B, 8 in 
condition C). An ANOVA yielded that the total time on 
task did not differ between conditions. The participants in 
condition A needed, on average, five minutes longer than 
their counterparts (Fig. 3) – yet, this difference was not 
statistically significant (F(2, 24)=1.93, p>.1). 
 

Figure 3: Time on Task 
After the study, all solutions were manually assessed by 

a human UML expert. Concerning the solution quality, 
there was a significant difference between conditions. The 
total maximum score a student could get was 104. The 
group averages were 94.4 (A), 82,2 (B) and 100,9 (C). An 

 

475



ANOVA showed that this difference was significant 
(F(2,24)=5.8, p<.01). A Tukey HSD Test showed that the 
significant difference was between the human tutor 
condition (C) and the plain UML tool condition (B).  
  

 
Figure 4: Solution Quality 

 
Some of the results of the post-questionnaire are 

interesting. In the post-questionnaire, students of condition 
A stated that they liked the feedback given by the MFS 
tool (answer mean: 4.3 on a 0-5 scale). This was even 
higher than the mean answer (4.0) to the corresponding 
question for condition C about the feedback of the human 
tutor (answer mean: 4.1) – even though this difference was 
not statistically significant (p=.68). Also, when asked if 
they agree to the statement that they learned a lot during 
the study, students in condition A confirmed this statement 
(4.4 on a 0-5 scale) stronger than the students in the other 
conditions (3.3 for condition B, 3.8 for condition C) did. 
An ANOVA showed that this difference was not 
statistically significant, though (p=.08).   

A manual inspection of all the models created in 
condition A showed that in no instance, misleading 
feedback (i.e., critique of a correct solution, or no critique 
of a poor solution) was given. This was true for both the 
class diagrams and the activity diagrams. We also collected 
evidence as to how the students used the ITS feedback. 
Overall, the use of the feedback messages was as intended 
by the MFS designers and lead to an improvement of the 
models. Examples: In task 1, many subjects chose wrong 
UML association types and corrected this after the IST 
feedback (in all but one case). In some tasks, students 
tended to create class attributes instead of methods (e.g., 
for “turn engine on” or “turn engine off” in task 1). The 
ITS feedback was helpful for students to detect and change 
this. In the activity diagrams, lacking loops were detected 
by the ITS, and most students were able to add correct 
loops after the corresponding feedback. 

Discussion 
At first sight and from a quantitative statistical perspective, 
the study did not yield the desired result. The main 
hypothesis that the MFS tool supports learning UML skills 
better than a standard UML tool can do was not confirmed 
at the .05 significance level. Yet, there are still some 
positive and promising results. First, the results of the 
study indicate that the lack of statistical significance might 

be due to the relatively low number of subjects. Indeed, the 
average score of condition A was much higher than the 
score of condition B (Cohen’s d = 0.76). Additionally, the 
fact that condition C did best in the study (although not 
significantly better than the MFS condition) was not really 
a surprise: human tutors still do better than ITS systems in 
most cases, and the tutor-student relationship of 1: 8 in our 
study was very comfortable for the students (yet, not 
realistically feasible at public universities in Germany). 
Another positive aspect of the study is related to a possible 
field use of the system in real classroom settings: the 
students expressed that they liked to work with the ITS 
system, and there are also clear practical benefits at the 
learning management level (e.g., the integration with the 
GATE system facilitates the workflow). 

Also aside from the empirical insights, there are some 
contributions of the MFS system to the ITS field: the 
analysis and feedback methods in the system allow for a 
simple and low cost development of tutors, but still the 
mechanisms are flexible and accommodate multiple 
solution variations – a challenge that any ITS for modeling 
has to face. In that context, it is remarkable that the 
“shallow” criteria that the system uses to analyze solutions 
have, apparently, worked and did not lead to misleading 
feedback. One can of course critically remark that the MFS 
system still restricts the flexibility of learners (since only 
one solution and variants are accepted). Yet, such an 
approach may be acceptable for novices that work on 
beginner’s tasks, while it is probably less appropriate for 
more advanced, complex modeling tasks that come with a 
greater variation of possible solutions. 

Conclusion 
This paper presented MFS, an ITS for modeling that 
consists of a UML modeling tool and a web-based exercise 
management system. MFS is (to our knowledge) the first 
UML tutor that supports not only class diagrams but also 
activity diagrams, and it does so by comparing the student 
solution to an example solution, tolerating certain degrees 
of solution variations that are typical for modeling tasks. 
The design of MFS allows for a simple (and thus cheap) 
authoring of tasks, at the expense of a theoretical 
possibility of giving inappropriate feedback since not all 
good solutions might be recognized as such and since the 
“shallow” check of solutions could be prone to overseeing 
errors. Yet, in the context of training novices, these 
potential issues did not come up in practice: the system 
worked fine and, while not leading to a significant learning 
gain as compared to a control condition, still gave reasons 
to continue with this line of research and development.  
 In future work, we will extend the MFS system to other 
UML diagram types, and will further fine-tune the system 
feedback. Also, we are planning a field test of the system 
in a larger University class with approx. 300 students 

476



(trying to find out to what extent the ITS use help reduce 
human tutor time), and are planning to devise methods that 
allow for incorporating multiple sample solutions (and 
variations thereof) into MFS. 

References 
Ali, N.H. et al. (2007). Assessment system for UML class 
diagram using notations extraction. International Journal 
of Computer Science and Network Security, Vol. 7,  No. 8,  
pp. 181-187. 
Baghaei, N. & Mitrovic, A. (2007). Evaluating a 
collaborative constraint based tutor for UML class 
diagrams. Proceedings of the 13th International 
Conference on Artificial Intelligence in Education, pp. 
533-535. 
Blank, G. et al. (2005). A web based ITS for OO design. 
Proceedings of The 12th International Conference on 
Artificial Intelligence in Education. 
Feddon, J. & Charness, N. (1999). Component 
relationships depend on skill in programming. Proceedings 
of 11th Annual PPIG Workshop, University of Leeds, UK. 
Lahtinen,. E. et al., 2005. A study of the difficulties of 
novice programmers. Proceedings of the 10th annual 
SIGCSE Conference on Innovation and Technology in 
Computer Science Education, pp.11-18. 
Lynch, C., Ashley, K. D., Aleven, V., & Pinkwart, N. 
(2009). Concepts, Structures, and Goals: Redefining Ill
Definedness. International Journal of Artificial Intelligence 
in Education, 19(3), 253-266. 
Matthíasdóttir, A. (2006). How to teach programming 
languages to novice students? Lecturing or not? Pro-
ceedings of the International Conference on Computer 
Systems and Technologies, pp. 1-6. 
McCracken, M. et al. (2001). A multi national, 
multiinstitutional study of assessment of programming 
skills of first year CS students. In Working group reports 
from ITiCSE on innovation and technology in computer 
science education, New York, NY, USA, pp. 125–180. 
ACM. 
Pintrich, P. R. et al. (1987). Students’ programming 
behavior in a Pascal course. Journal of Research in 
Science Teaching 24 (5), 451–466. 
Perkins, D. N. et al. (1989). Conditions of learning in 
novice programmers. In E. Soloway & J. C. Spohrer 
(Eds.), Studying the Novice Programmer. Lawrence 
Erlbaum Associates. 
Soler, J. et al. (2010). A web based e learning tool for 
UML class diagrams. Proceedings of IEEE Education 
Engineering (EDUCON), pp. 973 – 979. 
Strickroth, S. (2009). Unterstützungsverfahren für Tutoren 
bei der Online Abgabe von Übungsaufgaben. Bachelor 
Thesis. Clausthal University of Technology, Department of 
Informatics 

Tullis, T., Albert, B., 2008: Measuring the User 
Experience, Collecting, Analyzing and Presenting 
Usability Metrics, Morgan Kaufmann. 
 

Annex: Task descriptions 
 
Task 1: Create a UML class diagram for the following 
description: A car is specified through its producer, its 
name and its color. Tires and the motor are part of a car. A 
motor is specified by output power and cylinder capacity. 
A motor can be started and stopped. A tire has a certain 
pressure. A person has a surname and a last name, persons 
can buy cars. Additionally, a person can have a bank 
account, which is specified by an account number. 
 
Task 2: Create a UML class diagram for the following 
description: A soccer player has a name, a date of birth and 
a number. A soccer player is part of a team, and a team 
cannot exist without players. A team is characterized by its 
name, points, scored goals and goal difference. There are 
four player types: a player can either be goalkeeper, 
defender, midfield player, or striker. 
 
Task 3: Create a UML class diagram for the following 
description: Computers contain microprocessors and heat 
sensors. Computers have a specific performance and can 
be started and stopped. Microprocessors have a specific 
size, and heat sensors implement the technical interface 
“IFSensor”. This interface allows for activation and 
reading. 
 
Task 4: Create a UML activity diagram for the following 
description where Tim wants to cook Spaghettis. He first 
boils water and then adds the Spaghettis to the boiling 
water. The Spaghettis then remain in the pot for 10 
minutes. 
 
Task 5: Create a UML activity diagram for the following 
description where Tim thinks about what happens after the 
assessment of written exam exercises. First, the points are 
summed up. If the student has less than 100 points, he 
failed and nothing else happens. If he has at least 100 
points, he passed and his mark is calculated. Then, the 
mark is published and, in parallel, sent to the University 
administration. 
 
Task 6: Create a UML activity diagram for the following 
description where Tim comes from classes and wants to 
watch soccer – but finds out that there is no cold beer in 
the fridge. First, he puts the beer in the fridge. Then, he 
waits for 10 minutes and tests if the beer is cold enough. If 
the beer temperature is 7 degrees Celsius or lower, he takes 
it and drinks it. Otherwise, he waits another 10 minutes and 
tests again until the beer is cold enough. 
 

477




