

Abstract
Event Management is one of the most lucrative and growing
professions today. At present event management is done by
humans. With the growing demand for managing large events,
there is a rising demand for building intelligent systems to
manage events. The so called event management systems today
are only data processing systems that are unable to carry out
decision making task on their own. Event management systems
today do not consider emergencies and risk assessment as part of
their execution. In this paper, we present an approach for
representing events and monitor their execution. In particular,
discuss the exceptions that can occur during an event execution
and how they can be managed using event management rules.
We present strategies for writing management rules that are used
to handle problematic events and to build a DAG based
programming system for event management. Our simulation
results show how the performance of our event management
system performs with the exception management rules.

 Introduction

Event representation and event management have been
gaining attention increasingly from the researchers of
diverse discipline. Many real world situations can be
viewed as events involving resources whose states change
over time causing events of complex patterns. Often agents
not only participate in causing the events but also
deliberately manage the events by observing and
reasoning with them. In this paper, we present an approach
where we represent events hierarchically at different
levels of abstraction while relating events at a given level
of abstraction both temporally and causally. Each node in
the hierarchy is associated with a set of rules called the
event management rules which monitor event at that node.

 The paper is organized as follows. In the next section,
we present the related work. In the section Event
Representation, we discuss how events can be represented
hierarchically. In the following section, we present a
programming system based on the event representation

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

language VERL and discuss the exceptions that can occur
during an event execution. We then describe our
implemented programming system for event management
(PSEM) and discuss the results of our analysis. The final
section concludes the paper.

Related Work
Allen et al. [1] argue that events are methods used to
classify relevant patterns of change rather than entities in
the real world. Sowa [2] categorize events as changes that
occur in the discrete steps of a process. In knowledge
representation, an event is an activity that involves an
outcome [3] or an arbitrary classification of a space-time
region by a cognitive agent [4]. Event and time are
intrinsically linked as discussed in [5]. The DOLCE
(Descriptive Ontology for Linguistic and Cognitive
Engineering)[6] is an event ontology, in which events are a
subclass of perdurant occurrences that are disjoint to the
entities of endurant, quality, and abstract. The SUMO
(SuUpper Merged Ontology)[7], designed by the IEEE
Standard Upper Ontology Working Group consists of a set
of concepts, relations, and axioms where abstract and
physical entities are divided, in which the physical entities
are classified into objects and processes.
 Various event representation languages have been
proposed such as SDL [9] (Scenario Description
Language), VERL [11](Video Event Representation
Language) and SWRL[10]. OWL [8] (Web Ontology
Language) is adequate for describing static concepts and
relationships but is insufficient for modeling event
ontology with dynamic features [10]. VERL stands close to
our need for describing events and event plans. But VERL
faces certain limitations. For example, VERL does not
handle exceptions events and cannot be used directly for
exception handling, and as such can not be comfortably
used for large scale events. However, in this paper, we use
VERL to describe events, and compile VERL programs
to produce event DAGs.

Rule Based Event Management Systems

Ridhika Malik
Guru Gobind Singh

Indraprastha University
India

ridhikamalik@gmail.com

Nandan Parameswaran
University of New South Wales

Australia
paramesh@cse.unsw.edu.au

Udayan Ghose
Guru Gobind Singh

Indraprastha University
India

g_udayan@lycos.com

363

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

Event Representation

Let S be the aggregate states of all resources in the world,
and Γ be the set of actions that an agent can perform at any
state.
Event as a DAG structure
We represent an event using a dag (directed acyclic graph)
where each node is a sequence of states s ∈ S occurring
over an interval of time and each state is associated with an
action α ∈ Γ that can be performed by an agent when the
control reaches that state. The intervals are organized
hierarchically where the higher level nodes represent
abstract events and lower level nodes represent nodes with
more details. Additionally, the nodes are linked to show
Allen’s [1] temporal relations, causality, and domain
dependent relations. Figure 1 below shows the structure of
a simple event.

VERL and the DAG structure
Events as a DAG structure are not a convenient formalism
for representing large events. In this paper, we have used
VERL for event description since VERL permits
description of an event the way a programming language
permits the description of a computation as a program. In
VERL, the primary entities (objects) are events and
operations are permitted on these events. Abstract events
can be described as composite events which in turn are
described using the “Process” concept in VERL. A
process is defined using several sub events. Events can be
related using the relations AND, OR, sequential, overlap,
etc., and composed using constructs such as if, while,
repeat-until, and loops. Besides this, the temporal relations
could be implemented using Allen’s interval algebra [9].

A VERL description can be compiled and represented as
a DAG by beginning with the abstract process entity which
will form the root node of the DAG. In Figure 1 below,
we depict the root node to represent an abstract event. On
further analysis of the VERL code, we identify the next
level nodes and describe them using the AND, OR, SEQ,
REP, and PAR operations as shown.

Figure 1: An event structure as a DAG.(Undirected arcs
have been used for simplicity.)

Event management rules
When events are performed (or executed) by agents, often
unforeseen situations arise resulting in unexpected states of
resources involved in the event. An event plan needs to be
robust in handling exceptions. More the exceptions
handled, the more secure are our plans. To handle
exceptions, we attach excepting handler rules to the event
nodes. These rules are called event management rules. We
briefly discuss below a few event management strategies.

An event management rule is a set of rules (attached to an
event node) that monitors the states of the resources
involved in the event execution. As long as the resources
are in acceptable states, the event execution is said to be
normal. When a resource reaches an erroneous state, the
execution of the event is said to have reached an
exceptional situation, and the event management rules
associated with the event node are triggered to handle the
exceptional situation.
Prioritize event nodes In a given DAG structure, not all
nodes may be important in an event management activity.
Thus, our first task is to attach a weight at each event node
(at all levels) where the weight signifies the importance of
the nodes for the overall event to perform successfully.
The resources that are involved in the event nodes of
higher weights are identified as resources of higher
priority. The event management rules will have to be
“hard working” rules while monitoring resources of higher
priority.
Risk assessment in nodes Within a given event (which
spreads an interval of time), prioritize states that based on
the risk associated with the states. Suppose that Σ is a set of
valid states, Ε is a set of error states. When α action is
attempted on a given state si ∈ Σ of a resource r, in a real
world, it is not guaranteed that the resource r will always
reach its targeted state sj ∈ Σ. There is always a non
zero probability that r will end up in one of the error states
sK ∈ Ε. Larger the probability of reaching a state in Ε,
higher the risk associated with the state s.
Weighted relational links Often, the failure of an event
can contribute to the failure of other events in varying
degrees. One way we can account for the degree of impact
of the failure of an event is to assign a weight to the
relational links as well that emanate from the event node.
This will help in propagating the effect of the failure of one
event across the entire DAG structure. Note that in this
strategy, even the relation between the parent and child
node in a DAG structure will be assigned a weight. The
weight on the relational link in a sense quantifies the
dependency of one node upon the other. The following
relations are needed to be considered.
Parent-child relation: Not all child nodes will be equally
important. Thus those that are considered crucial can be
assigned higher weights.

364

Parallel event nodes: Typically, parallel events execute
independently as they are often mutually independent.
They may have lower weights for their relational link.
Causal Dependency: Links of this type are more
important than the parent-child relationship, and thus must
be weighted more.
Nested management rules: When the management rules
(attached to an event node) themselves run into exceptional
situations, we call this as a nested exception. In such
situations, we need another level of exception management
rules. In such situations, there is a risk that cost of the
event management activity itself might surpass the cost of
executing the overall event, and thus it is permitted only
when the overall cost is less than the threshold assigned to
the current event node. When the management cost
exceeds this threshold, event management of that node will
be suspended. The cost is typically estimated in terms of
the physical resources involved and the time that will be
spent.

Executing a DAG structure
Executing a DAG structure involves executing the events
in the DAG. We assume that the nodes are temporally
organized from left right (time flows from left starting at
the left most leaves). (Note that there can be several left
most leaves temporally.) We begin at the lower most event
intervals (nodes) at their left most (starting) point. We
begin with the first state s0 ∈ Σ in the event which will be
the initial state. As we execute the actions at s0, the
involved resources change states leading to an aggregate
state s1. At this point, two updates have to be made:
(a) revise the states of the parent event nodes;
and (b) revise the actions at the parent event nodes. We
refer to this update as bottom-up data flow. In general, the
bottom-up data flow will affect all nodes from the leaf
nodes up to the top most nodes. (Note that there may be
more than one such top most node in the DAG.)

As we execute the actions, resources transitioning from
one state to another, an interesting situation arises when a
resource enters an error state instead of a normal state.
This signals that a management action is now necessary to
bring the resources from the error state to the normal state.
The management actions are executed by the event
management rule attached to the event node.

At any event node n, when the management rules are
triggered, two types of actions take place: (a) the data that
flows in from the children nodes are consolidated to
compute and current (abstract) state of the resource
appropriate to the level of the node n; and the results that
need to be sent to the parent node are computed and sent
to the parent node; (b) wait for the data for results from
the parent node, update the current state at node n, compute
new results and send it to the children node. The event
execution and management involves information flowing

from the bottom to top nodes and from the top nodes to the
bottom nodes.

PSEM: A Programming System for Event
Management
Our implementation of an event management called PSEM
(Programming System for Event Management) consists of
the following modules:
VERL Compiler The VERL compiler accepts a
procedural description of an event and compiles it into an
event DAG structure. (This module is still under
development. For the results reported in this paper, manual
compilation was performed.)
DAG editor The DAG structure build from the VERL
Compiler can further be edited manually when necessary
using this editor. This will typically happen when event
management rules begin to fire, changes in external
situations may demand editing changes to the DAG
structure. For example, the user can modify an event’s
attributes like start time, end time, number of children,
actions, and the management rules associated with the
event.

Causality based Heuristics
Causal relationship among the events is perhaps the most
important relationship amongst all relationships. In our
system, we use heuristics to exploit causal relationship
specifically. Assuming causal relationship to be transitive,
we use the degree of an event node to ascertain its
significance in the DAG. We use the following heuristics
while reasoning with causal links:
a) The impact of causality weakens as it propagates over
time across several future events; thus immediately
causally depending event nodes will be affected more
strongly than the future event nodes that will be affected
eventually in future; b) a node with more causal links
emanating from it is more important (higher priority) than
the one that has less; c) if two nodes have comparable
number of out going causal links, then the one with
higher number of incoming causal links is more important.

Figure 2 below shows the sample session of the event
management system PSEM we implemented.

365

Figure 3 below shows a DAG structure for a video clip
(Mickey Mouse Clubhouse HOT DOG Song, 65secs on
youtube). Figure 4 show the node distribution at different
levels of abstractions.

The trend shows that as we go from root to leaf node
parallelism increases but sequentialism decreases i.e. at
lower levels the events generally occur concurrently.

Scores
Let us define indegree and outdegree values (based on
causal link) for each node as follows:
e1: (0, 1) e2: (0, 1) e3: (0, 1) e123: (3, 1) e4i: (0, 1)
e4ii: (0, 1) e4iii: (0, 1) e4: (3, 1) e10: (0, 1) e11: (0, 1)
e14: (0, 1) e910: (3, 1) e111: (3, 0)
We divide the nodes in to two sets S1 and S2 based on their
indegree and outdegree values.
S1 = { e1,e2, e3, e4i,e4ii,e4iii,e10,e11,e14 }. All these
nodes have indegree 0 (outdegree 1), and thus the events in
them do not depend on any other nodes.
S2 = {e123, e4 , e910} and these nodes all have indegree 3
and outdegree 1. Since the outdegrees are the same for the
nodes in both the sets, we distinguish between the nodes
in these two on the basis of their indegree. Thus, we
consider the nodes in S2 to be contributing more to the
success of the overall event than S1, and we signify this
fact by choosing a higher weight for these nodes. In a real
world scenario, events often do not get executed
completely, and thus when they occur, they only occur
partially. It is then useful to quantify the overall success of
an event.
We quantify the (partially) successful completion of an
event e at a node i with weight wi by a score c(i) as

follows. Let n be a leaf node. Then, c(i) = wi, if the node
was executed successfully; else c(i) = -wi. If the node is
not a leaf node, then c(i) = weighted average of the scores
of all the children nodes. A positive score signifies the fact
that the event has been partially successful, while the
higher negative score signifies a total disaster.

Assigning a weight of 0.3 for all nodes in S1, and 0.9 for all
nodes in S2, the scores have been plotted in Figure 5
below.

 Figure 5: Scores and management rules
We observe from the figure above that the score improves
as we employ more management rules.

Conclusion
The goal of our research is to provide a framework for a
flexible event management system. The DAG structure
supports a scalable event representation. We have also
argued that with every event, we need a set of management
rules to make event execution robust against unpredictable
changes in the environment. Future work involves
developing management strategies for complex events such
as the ones occurring in long action filled videos.

References
[1] Allen James, F. and Ferguson George. “Actions and events in
interval temporal logic” Journal of Logic and Computation,
4(5):531–579, October 1994.
[2] Sowa J. F.. Knowledge Representation. Brooks/Cole, 2000.
[3] Allen, J.F., “Towards a general theory of action and time”,
Artificial Intelligence, 23:123-154 (1984).
[4] Hobbs, J.R., Pan, F., “An Ontology of Time for the Semantic
Web”, TALIP, 3(1):66-85 (2004).
[5] Nguyen, P. and Corbett, D., “A Formalization of Subjective
and Objective Time Ontologies”, 3rd Australasian Ontology
Workshop (AOW-07), Gold Coast, Australia, CRPIT series,
85:45-54 (2007).
[6] Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari A.,
and Schneider L..Wonderweb deliverable d17. the wonderweb
library of foundational ontologies and the dolce ontology
[7] Niles I. and Pease A.. Towards a standard upper ontology. In
Proc. of the 2ndInter. Conf. on Formal Ontology in Information
Systems (FOIS-2001), 2001.
[8] Bechhofer, S., et al., OWL Web Ontology Language
Reference,Feb. 2004, http://www.w3.org/TR/owl-ref.
[9] Van-Thinh Vu ,”Temporal Scenario for Automatic Video
Interpretation”, Ph D Dissertation , Université de nice sophia
antipolis, October 2004.
[10] Niles I. and Pease A.. Towards a standard upper ontology. In
Proc. of the 2nd Inter. Conf. on Formal Ontology in Information
Systems (FOIS-2001), 2001.
[11] Bolles B.; Nevatia, R., “A hierarchical video event ontology
in owl”, Proc. ARDA Challenge Workshop, 2004

Figure 3: DAG structure for Hot Dog example

 Figure 4: Event distribution in levels

366

